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Abstract—IEEE 802.11p and 1609 standards are currently
under development to support Vehicle-to-Vehicle and Vehicle-
to-Infrastructure communications in vehicular networks. For
infrastructure-based vehicular relay networks, access probability
is an important measure which indicates how well an arbitrary
vehicle can access the infrastructure, i.e. a base station (BS).
On the other hand, connectivity probability, i.e. the probability
that all the vehicles are connected to the infrastructure, indicates
the service coverage performance of a vehicular relay network.
In this paper, we develop an analytical model with a generic
radio channel model to fully characterize the access proba-
bility and connectivity probability performance in a vehicular
relay network considering both one-hop (direct access) and
two-hop (via a relay) communications between a vehicle and
the infrastructure. Specifically, we derive close-form equations
for calculating these two probabilities. Our analytical results,
validated by simulations, reveal the tradeoffs between key system
parameters, such as inter-BS distance, vehicle density, transmis-
sion ranges of a BS and a vehicle, and their collective impact
on access probability and connectivity probability under different
communication channel models. These results and new knowledge
about vehicular relay networks will enable network designers and
operators to effectively improve network planning, deployment
and resource management.

Index Terms—Vehicular Ad Hoc Network (VANET), Wireless
Access in Vehicular Environments (WAVE), IEEE 802.11p, IEEE
1609, access probability, connectivity, relay.
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VEHICULAR ad-hoc network (VANET) is a type of
promising application-oriented network deployed along

a highway for safety and emergency information delivery (for
drivers), entertainment content distribution (for passengers),
and data collection and communication (for road and traffic
managers). VANET is a hybrid wireless network that sup-
ports both infrastructure-based and ad hoc communications.
Specifically, vehicles on the road can communicate with each
other through a multi-hop ad hoc connection. They can also
access the Internet and other broadband services through
the roadside infrastructure, i.e. base stations (BSs) or access
points (APs) along the road. When a vehicle moves out of
the radio coverage area of a BS, e.g. it is located in the
coverage gap between two adjacent BSs, it will identify and
use its neighboring vehicles (if any) as relays to access the
roadside infrastructure. These types of Vehicle to Vehicle
(V2V) and Vehicle to Infrastructure (V2I) communications
have recently received significant interests from both academia
and industry [1], [2], [3]. V2V communication has so far
been envisioned for supporting safety and traffic management
applications. With better sensing and data communication
techniques, drivers can share the information such as slippery
road, poor visibility, sudden stop and road congestion with
each other. Hence warnings are provided to prevent accidents
and improve road safety.

Fig. 1. Architecture of IEEE 1609 standards family

As shown in Fig. 1, IEEE 802.11p standard cooperates with
the IEEE 1609 standard family, which is developed to support
Wireless Access in Vehicular Environment (WAVE) and to
deliver safety and infotainment applications to vehicles on the
road [4], [5]. Specifically, IEEE 802.11p is a draft amendment
(with WAVE capability) to the IEEE 802.11 standards, which
is expected to be finalized and approved in 2010. The goal of
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802.11p standard is to provide V2V and V2I communications,
up to a range of 1Km, at an average data rate of 6 Mbps over
the dedicated 5.9 GHz (5.85-5.925 GHz) licensed frequency
band. IEEE 802.11p uses an amended 802.11a physical-layer
specification with Orthogonal Frequency-Division Multiplex-
ing (OFDM) technique. On Medium Access Control (MAC)
layer, it adopts the Enhanced Distributed Channel Access
(EDCA) protocol from the 802.11e standard to support Quality
of Service (QoS). The following standards are included in the
IEEE 1609 standard family: IEEE P1609.0, IEEE P1609.1,
IEEE P1609.2, IEEE P1609.3, IEEE P1609.4. Some new
standards have recently been added to IEEE 1609 family, such
as 1609.5 (Communications Management), 1609.6 (Facilities)
and 1609.11 (Electronic Payment Service). Their functions and
relationships with other 1609 standards are shown in Fig. 1.

IEEE 802.11p and 1609 standards are still in the draft stage.
The harsh vehicular communication environment, caused by
variable vehicle speed, high mobility, and dynamic network
topology, brings many technical challenges in developing
and deploying WAVE applications and services. From a
user/vehicle’s perspective, the first, and probably the most im-
portant, service requirement is to be able to access the roadside
infrastructure, directly or indirectly via a relay vehicle. From
the perspective of a network operator or service provider, it
is important to guarantee satisfactory and profitable service
coverage while minimizing the deployment and maintenance
costs of the roadside infrastructure.

To improve user satisfaction and service coverage of fu-
ture IEEE 1609 based WAVE systems and applications, this
research develops an analytical model to fully characterize
the access probability (for user satisfaction analysis) and the
connectivity probability (for service coverage analysis) for
infrastructure-based vehicular relay networks, wherein both
one-hop (direct access) and two-hop (via a relay) commu-
nications between a vehicle and the infrastructure (i.e. a BS)
are supported. In this paper, a generic connection model is
used to investigate the impact of different system parameters,
i.e., inter-BS distance (or BS density), vehicle density, radio
coverage ranges of BSs and vehicles, on key performance
metrics, i.e. user access probability and service connectivity
probability. The analysis is then applied to two widely used
communication channel models as specific examples of the
generic connection model. This research enables us to improve
access probability and connectivity probability in vehicular
relay networks, and therefore support reliable V2I and V2V
data transmissions in different commercial applications and
services, such as emergency messaging service, mobile Inter-
net access and on-road entertainments.

The rest of this paper is organized as follows. In Section II
we introduce related work. In Section III we define the system
model. In Section IV we present the analysis of the access and
connectivity probabilities under a generic radio channel model.
In Section V we focus on two widely used radio channel
models, i.e. the unit disk communication model and the log-
normal shadowing model, and their analysis as special cases
of the generic channel model. In Section VI we discuss the
analytical and simulation results, followed by conclusions in
Section VII.

II. RELATED WORK

Recently, significant research on VANET, WAVE, IEEE
802.11p and 1609 standards has been undertaken to measure,
estimate and characterize wireless vehicular channels [6], [7],
[8], to model and analyze system performance [9], [10], [11],
[12], [13], [14], to design and evaluate MAC protocols [15],
[16], [17], [18], [19], and to develop VANET simulator [20]
and testbed [21]. Specifically, in [9], it is found a communica-
tion distance of 1000m, which is specified in the IEEE802.11p
Project Authorization Request (PAR), cannot be achieved by
an Equivalent Isotropically Radiated Power (EIRP) of 2W in
a vehicle-to-vehicle (V2V) highway scenario. The impacts of
vehicle density (or V2V distance) and Line-Of-Sight (LOS)
communication link on different system performance metrics,
such as throughput, average delay, packet loss, and collision
probability, are investigated in [10], [11], [12].

In [15], it is pointed out that the performance of IEEE
802.11p standard is not satisfactory in the infrastructure data
collection mode with a static backoff scheme. The capability
of 802.11p MAC protocol is further evaluated and enhanced
to support both safety applications (i.e. emergency message
dissemination with strict time constraints) and non-safety
applications [16], [17], [22], [18], [19]. In [23], Salhi et al.
presented a novel data gathering and dissemination architec-
ture based on hierarchical and geographical mechanisms for
vehicular sensor networks. In [24] and [25] practical traffic
prioritization and power control schemes are proposed and
evaluated respectively, to support real-time delivery of safety-
critical emergency information. In [26], Shrestha et al. develop
a new scheme using the BitTorrent tool and bargaining game
to efficiently distribute a large amount of data over V2V and
V2I communication links.

Access and connectivity probabilities have been studied
in the literature for one-dimensional (1-D) [27], [28] and
two-dimensional (2-D) [29], [30], [31] multi-hop wireless
networks. In [27], Wu focuses on V2V communications and
derives a close-form expression of connectivity probability in
a linear VANET with high-speed vehicles and time-varying
vehicle populations, i.e. dynamic network topology and ve-
hicle density. The impacts of some key network parame-
ters, such as vehicle arrival rate, random vehicle speed and
transmission range, are considered in his work. Based on a
Poisson assumption of node distribution, Dousse, Thiran and
Hasler study a 1-D network with equally-spaced BSs and
Poissonly distributed vehicles in [28]. Considering a unit disk
communication model, they derive the connectivity probability
(defined as access probability in this paper) that an arbitrary
vehicle can reach at least one BS over multiple hops.

For a 2-D multi-hop cellular network, where nodes are
uniformly distributed in a circular area of unit radius, Ojha
et al. obtain the minimum transmission range required for
these nodes to be able to access a BS located at the center
of this circular area over multiple hops under the unit disk
communication model as the number of nodes goes to infinity
[29]. When both BSs and nodes are Poissonly distributed in a
2-D area and a log-normal shadowing communication model
is considered, a lower bound on the probability that a node
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cannot access any BS within a designated number of hops has
been derived in [30]. The result relies on the independence
assumption that the event that a node cannot access to a BS
in a specific number of hops, say t, and the event that another
node cannot access to a BS in t hops are independent, which is
not always valid for some cases (to be shown in this paper).
In [31], the probability that a wireless ad-hoc network with
randomly and uniformly distributed nodes form a connected
network is studied. It is shown that the probability of having
a connected network and the probability of having no isolated
node asymptotically converges to the same value as the number
of nodes in the network goes to infinity.

Different from previous work carried out mainly under the
unit disk communication model and considering no restriction
on the maximum hop count for packet transmission, this
research focuses on vehicular relay networks with a maximum
hop count of two hops to ensure high communication quality
and reliability between a node and a BS, i.e. two-hop V2I com-
munications, which is more practical for real-world VANET
application scenarios. In addition, our analytical approach uses
a generic communication channel model and derives the exact
close-form equations of access and connectivity probabilities,
not the asymptotic results that are valid only when the number
of nodes (or node density) in a network is very large. The
results obtained under the generic channel model are then
applied to two widely used models, i.e. the unit disk model and
the log-normal model, as special cases. Finally, we investigate
the impacts of some key system parameters, such as inter-
BS distance (or BS density), vehicle density, transmission
ranges of a BS and a vehicle, on user access probability and
service connectivity probability performance under different
communication channel models.

III. SYSTEM MODEL

Fig. 2. An Infrastructure-based Vehicular Relay Network.

We consider an infrastructure-based vehicular relay net-
work, as shown in Fig. 2, wherein a number of BSs are
uniformly deployed along a long road, while other vehicles
are distributed on the road randomly according to a Poisson
distribution. We analyze the access probability, i.e. the proba-
bility that an arbitrary vehicle can access its nearby BSs within
two hops, and the connectivity probability, i.e. the probability
that all vehicles can access at least one BS within two hops,
of the network by investigating a subnetwork bounded by two
adjacent base stations. Let L be the Euclidean distance (in
meters) between two adjacent BSs and ρ be the vehicle density
measured in vehicles per meter (vpm). Since the vehicles are
assumed to be Poissonly distributed with density ρ, discussion
on the distribution of the number of vehicles on the road is
only meaningful if we restrict to the (random) number of
vehicles in a specific section of the road, and we call any

section of the road a road segment. For a road segment with
length x, the number of vehicles on that road segment is then
a Poisson random variable with mean ρx. So the probability
that there are k vehicles on a road segment of x meters is
given as

f(k, x) =
(ρx)ke−ρx

k!
, k ≥ 0. (1)

Since we investigate a subnetwork bounded by two adjacent
BSs, the probability that there are k vehicles on the road
segment bounded by two adjacent BSs is then f(k, L).

Assuming a generic channel model C, let gCv (x) be the
probability that two vehicles separated by an Euclidean dis-
tance x are directly connected. Similarly, denote by gCb (x) the
probability that a vehicle and a BS separated by an Euclidean
distance x are directly connected. We assume that the event
that two vehicles (or a vehicle and a BS) are directly connected
is independent of the event that another two vehicles (or a
vehicle and a BS) are directly connected. That is, the event that
two vehicles (or in the similar case, between a vehicle and a
BS) are directly connected is only determined by the locations
of the two vehicles and is not affected by the presence or
absence of connections between other pairs of vehicles1. We
also assume that gCb (x) ≥ gCv (x). This assumption is justified
because it is often the case that a BS can not only transmit
at a larger transmission power than a vehicle, it can also be
equipped with more sophisticated antennas, which make it
more sensitive to the transmitted signal from a vehicle.

IV. ANALYSIS OF ACCESS AND CONNECTIVITY
PROBABILITIES

Assume that the subnetwork being considered is placed at
[0, L]. The two BSs at both ends of the subnetwork are labeled
as BS1 and BS2 and are at 0 and L respectively. Denote by
G(L, ρ, C) the subnetwork with length L, vehicle density ρ
and channel model C. We investigate the access probability
pa that an arbitrary vehicle in G(L, ρ, C) can access either BS
(either BS1 or BS2). We also investigate the probability pc
that all vehicles in G(L, ρ, C) are connected to at least one of
the BSs at both ends of the subnetwork.

A vehicle is said to be located at x if its Euclidean distance
to BS1 is x. The probability that a vehicle located at x is
not directly connected to BS1 and BS2 are 1 − gCb (x) and
1 − gCb (L − x) respectively. Because the event that a vehicle
is not directly connected to BS1 and the event that the same
vehicle is not directly connected to BS2 are independent, the
probability that the vehicle is directly connected to either BS1
or BS2 is then

p1(x) = 1− (1− gCb (x))(1− gCb (L− x)). (2)

1Although field measurements in real applications seem to indicate that the
connectivity between different pairs of geographically / frequency proximate
wireless nodes are correlated [32], [33], [34], the independence assumption
is generally considered appropriate for far-field transmission and has been
widely used in the literature under many channel models including log-
normal shadowing model [35], [36], [30], [37]. Note that the unit disk model
is a special channel model which fulfills the independence assumption by
nature [38, pg. 12]. This is because for the unit disk model, two vehicles are
directly connected if and only if their Euclidean distance is smaller than the
transmission range, and is not affected by the presence or absence of other
connections (vehicles).



4

In order to derive pa and pc we need the following lemmas.

Lemma 1. Let K1 be the set of vehicles in the subnetwork
G(L, ρ, C) which are directly connected to either BS1 or
BS2, then K1 has an inhomogeneous Poisson distribution with
density ρp1(x) where p1(x) is given by Eq. (2).

Proof: Let K denotes the set of vehicles in G(L, ρ, C).
Then K has a homogeneous Poisson distribution with density
ρ over the segment [0, L]. Consider a realization of K and
remove a vehicle located at x from this realization with
probability 1− p1(x), independent of the removal probability
of other vehicles. The remaining set of vehicles can be
effectively viewed as a realization of K1. Note that the above
procedure which removes/retains vehicles independently with
some probabilities is called thinning [38]. Let N (K1) be the
number of vehicles in K1. Then following the law of total
probability

Pr(N (K1) = j)

=

∞∑
i=j

Pr(N (K) = i) Pr(N (K1) = j|N (K) = i). (3)

For a randomly chosen vehicle in K, the vehicle is known
to be uniformly distributed in [0, L]. Hence, the probability
that a vehicle is in K1 given that the vehicle is in K is

q =
1

L

∫ L

0

p1(x)dx. (4)

Since the probability of a randomly chosen vehicle in K
being directly connected to either BS1 or BS2 are identically
and independently distributed, the probability that among i
vehicles in K there are j vehicles in K1 follows the binomial
distributed B(i, q). Thus

Pr(N (K1) = j|N (K) = i) =

(
i

j

)
qj(1− q)i−j . (5)

Applying Eq. (1) and (5) into Eq. (3) we have

Pr(N (K1) = j) =

∞∑
i=j

(ρL)i

i!
e−ρL

(
i

j

)
qj(1− q)i−j

=
(
∫ L
0
ρp1(x)dx)

j

j!
e−

∫ L
0
ρp1(x)dx. (6)

Furthermore, denote by N (K1(l)) the number of vehicles in
a road segment l within [0, L] which are directly connected
to at least one BSs. Using the above procedure, it is trivial to
show that

Pr(N (K1(l)) = j) =
(
∫
x∈l ρp1(x)dx)

j

j!
e−

∫
x∈l ρp1(x)dx. (7)

For n mutually disjoint road segments l1, l2, · · · , ln in [0, L],
the random variables N (K1(l1)), · · · ,N (K1(ln)) are mutu-
ally independent. This is because the event that one vehicle is
directly connected to either BS1 or BS2 is not affected by the
locations of other vehicles, and whether or not those vehicles
are directly connected to either BS1 or BS2. Consequently,
the existence and locations of vehicles in one road segment
will not affect the number of vehicles directly connected to

BS1 or BS2 in another disjoint road segment. With the above
independence property, Eq. (6) and (7), the proof is then
complete. Note that some parts of the proof are similar to
the arguments used in [38].

Lemma 2. Let p2(x) be the probability that a vehicle located
at x in G(L, ρ, C) is directly connected to at least one vehicle
in K1, then

p2(x) = 1− e−
∫ L
0
gCv (‖x−y‖)ρp1(y)dy (8)

where p1(y) is given by Eq. (2) and ‖.‖ denotes the Euclidean
norm.

Proof: Imagine we partition [0, L] into L/dy non-
overlapping intervals of differential length dy. Since dy is a
very small value, the probability that there exist more than one
vehicle within each interval of length dy can be ignored and
the probability that there exists exactly one vehicle within dy is
ρdy. The probability that there exists a vehicle in [y, y + dy]
which is also in K1 is then given by ρp1(y)dy. Note that
the vehicles at x and y are directly connected to each other
with probability gCv (‖x − y‖). Therefore, the probability that
a vehicle at x is directly connected to a vehicle in K1 and is
located in [y, y + dy] is gCv (‖x− y‖)ρp1(y)dy.

Let h(x, y) denotes the probability that the vehicle at x is
not directly connected to any of the vehicles in K1 located
within [0, y]. Because the events that distinct pairs of vehicles
are directly connected are independent, the event that the
vehicle at x is not directly connected to any of the vehicles in
K1 located within [0, y] is independent of the event that the
same vehicle is not directly connected to the vehicle in K1

located within [y, y + dy] (if there is any). We have

h(x, y + dy) = h(x, y)(1− gCv (‖x− y‖)ρp1(y)dy) (9)

where the second term on the right hand side of the equation is
the complement of the probability that a vehicle at x is directly
connected to a vehicle in K1 and located in [y, y+dy]. Eq. (9)
leads to

dh(x, y) = −h(x, y)gCv (‖x− y‖)ρp1(y)dy. (10)

Therefore the probability that a vehicle at x is not directly
connected to any vehicle in K1 is

h(x) = e−
∫ L
0
gCv (‖x−y‖)ρp1(y)dy. (11)

The result follows immediately.
The following two theorems give the access probability pa

and the connectivity probability pc respectively.

Theorem 1. Denote by pa(x) the access probability of a
vehicle at x, i.e. the probability that the vehicle at x is
connected to either BS1 or BS2 in at most two hops. Then

pa(x) = 1− (1− p1(x))(1− p2(x)) (12)

where p1(x) is given by Eq. (2) and p2(x) is given by Eq. (8).

Proof: The result follows immediately from the observa-
tion that the event that a vehicle at x is directly connected to
either BS1 or BS2 is independent of the event that the same
vehicle is directly connected to at least one vehicle in K1.
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Theorem 2 (Approximate result). Denote by pc the connec-
tivity probability of G(L, ρ, C), i.e. the probability that all
vehicles in the subnetwork G(L, ρ, C) are connected to either
BS1 or BS2 in at most two hops. Assume that the event that a
vehicle is connected to either BS1 or BS2 in at most two hops
is independent of the event that another vehicle is connected
to either BS1 or BS2 in at most two hops. Then

pc = e−
∫ L
0
ρ(1−pa(x))dx (13)

where pa(x) is given by Eq. (12).

Proof: Let K2 be the set of vehicles in G(L, ρ, C)
which are connected to either BS1 or BS2 in exactly two
hops. Together with the definition of K1 in Lemma 1, let
K1 +K2 = K\(K1+K2) be the set of vehicles in G(L, ρ, C)
which are not connected to either BS1 or BS2 in at most
two hops. Apply the thinning procedure for K, i.e. consider
a realization of K and remove each vehicle located at x
independently from this realization, with probability pa(x).
The resulting set of vehicles can be viewed as a realization of
K1 +K2 under our assumption that the event that one vehicle
is connected to either BS in two hops is independent of the
event that another vehicle is connected to either BS in two
hops, and the probability that vehicle at x is connected to
either BS in two hops is pa(x). Using the same technique as
that used in the proof of Lemma 1, it can be readily shown
that K1 +K2 has an inhomogeneous Poisson distribution
with density ρ(1 − pa(x)). Then all vehicles G(L, ρ, C) are
connected to either BS1 or BS2 in at most two hops if and
only if N (K1 +K2) = 0. The result follows.

Note that Theorem 2 only gives an approximate result
for the connectivity probability because of the independence
assumption. The following lemma proves, in a way, that the
event that a vehicle is connected to either BS1 or BS2 in at
most two hops is not independent of the event that another
vehicle is connected to either BS1 or BS2 in at most two
hops.

Lemma 3. Let h(x) = 1 − p2(x) be the probability that a
vehicle at x is not directly connected to any vehicle in K1; let
h(x1, x2) be the probability that two vehicles, at x1 and x2
respectively, are not directly connected to any vehicle in K1.
Then, h(x1, x2) ≥ h(x1)h(x2).

Proof: Let h(x1, x2; y) denotes the probability that two
vehicles, at x1 and x2 respectively, are not directly connected
to any vehicle in K1 located in [0, y]. Using the similar
argument in Eq. (9), we have

h(x1, x2; y + dy) = h(x1, x2; y)k(x1, x2; y) (14)

where k(x1, x2; y) = (1 − gCv (‖x1 − y‖))(1 − gCv (‖x2 −
y‖))ρp1(y)dy + (1 − ρp1(y)dy). The first term on the right
hand side of k(x1, x2; y) is the probability there is a vehicle
in K1 located in [y, y+dy] and both vehicles in x1 and x2 are
not directly connected to it. The second term on the right hand
side of k(x1, x2; y) is the probability that there is no vehicle
in K1 located in [y, y+ dy]. Expanding the right hand side of

k(x1, x2; y) we have

k(x1, x2; y) = 1− gCv (‖x1 − y‖)ρp1(y)dy
− gCv (‖x2 − y‖)ρp1(y)dy
+ gCv (‖x1 − y‖)gCv (‖x2 − y‖)ρp1(y)dy

Using the same approach in Lemma 2 we obtain

h(x1, x2) = e−
∫ L
0 [g

C
v (‖x1−y‖)+gCv (‖x2−y‖)]ρp1(y)dy

× e
∫ L
0
gCv (‖x1−y‖)gCv (‖x2−y‖)ρp1(y)dy

≥ e−
∫ L
0 [g

C
v (‖x1−y‖)+gCv (‖x2−y‖)]ρp1(y)dy

= h(x1)h(x2) (from Eq. (11))

Before obtaining the exact result of the connectivity proba-
bility, we introduce some properties in the following lemma.

Lemma 4. Let pc(y) be the connectivity probability of
G(L, ρ, C) conditioned on that the number of vehicles di-
rectly connected to either BS is n and they are located at
y = {y1, y2, · · · , yn : 0 ≤ yi ≤ L, 1 ≤ i ≤ n}; let pY (y)
be the probability density function (pdf) of y conditioned on
that there are n vehicles directly connected to either BS. The
following properties hold.

(i) pY (y) =

n∏
i=1

p1(yi)∫ L
0
p1(x)dx

(15)

(ii) pc(y) = e−
∫ L
0
ρ(1−p1(x))

∏n
i=1(1−g

C
v (‖x−yi‖))dx (16)

Proof: For n = 1, pY (y1) =
p1(y1)∫ L

0
p1(x)dx

is the probability
that a vehicle in K1 is located at y1. Since p1(yi) and p1(yj)
are mutually independent for i 6= j, the result follows for
Eq. (15).

For Eq. (16), note that a vehicle at x is not connected to
any BSs in at most two hops if it is not directly connected to
any BSs (the probability is 1 − p1(x)) and it is not directly
connected to vehicles which are located at y given that these
vehicles are in K1 (the probability is 1 − gCv (‖x − yi‖) for
1 ≤ i ≤ n). That is, vehicle at x cannot access any BS in at
most two hops with probability

(1− p1(x))
n∏
i=1

(1− gCv (‖x− yi‖)). (17)

Eq. (17) is valid when x /∈ y. When x = yj for arbitrary j,
we assume that gCv (0) = 1. This implies that pa(x|y) = 0.
So Eq. (17) is still valid when x ∈ y. Applying the thinning
procedure and the technique used in Lemma 1, we have the
number of vehicles which are neither directly connected to
any BSs nor directly connected to any of the vehicles at y
is an inhomogeneous Poisson random variable with density
ρ(1 − p1(x))

∏n
i=1(1 − gCv (‖x − yi‖)). The result follows

immediately.

Theorem 3 (Exact result). Denote by pc the connectivity
probability of G(L, ρ, C), i.e. the probability that all vehicle in
the subnetwork G(L, ρ, C) is connected to either BS1 or BS2



6

in at most two hops. Then

pc =

∞∑
n=0

Pr(N (K1) = n)

[∫
[0,L]n

pc(y)pY (y)dy

]
(18)

where pc(y) and pY (y) are given by Lemma 4; Pr(N (K1) =
n) is given by Lemma 1. When n = 0, we declare∫

[0,L]n
pc(y)pY (y)dy

∣∣∣∣∣
n=0

= pc(y)pY (y)

∣∣∣∣∣
n=0

= e−
∫ L
0
ρ(1−p1(x))dx.

Proof: Eq. (18) directly follows from the law of total
probability, so the details are omitted here.

Eq. (18) gives an exact formula for the connectivity proba-
bility which does not rely on the assumption that the event
that a vehicle is connected to either BS in two hops and
the event that another vehicle is connected to either BS in
two hops are independent. However Eq. (18) is much more
complicated than the approximate result in Eq. (13). In many
situations, Eq. (13) provides a reasonably accurate result for
the connectivity probability. Therefore we include both results
in this paper.

V. PERFORMANCE EVALUATION UNDER SPECIFIC
CHANNEL MODELS

Based on the analysis in Section IV, we further derive and
compare in this section the access probability and connectivity
probability performance under two specific channel models,
i.e. unit disk model and log-normal shadowing model.

A. Unit Disk Model

In the unit disk model U , assume that two vehicles are
directly connected if and only if their Euclidean distance is
less than or equal to r; assume that a vehicle and a BS are
directly connected if and only if their Euclidean distance is
not more than R. In other words,

gUv (x) =

{
1 if x ≤ r
0 otherwise,

gUb (x) =

{
1 if x ≤ R
0 otherwise.

where r and R are predetermined values, commonly known as
the transmission ranges. Typically we have R > r. Applying
the above equations into Eq. (2), (8) and (12) we obtain the
access probability under the unit disk model U :

(I) For 0 < L ≤ 2R,
we have p1(x) = 1 implies that pa(x) = 1 for x ∈
[0, L]. Hence,

pa = 1.

(II) For 2R < L ≤ 2R+ r,
we have p1(x) is 0 when x ∈ (R,L − R), and 1
otherwise. When x ∈ (R,L−R), Eq. (8) becomes

p2(x) = 1− e−
∫ R
0
gCv (‖x−y‖)ρdy−

∫ L
L−R

gCv (‖x−y‖)ρdy

= 1− e−
∫ R
x−r

ρdy−
∫ x+r
L−R

ρdy

= 1− e−ρ(2R+2r−L).

So substitute p2(x) into Eq. (12),

pa =
2R

L
+
L− 2R

L
(1− e−ρ(2R+2r−L))

= 1− L− 2R

L
e−ρ(2R+2r−L).

(III) For 2R+ r < L ≤ 2R+ 2r,
we have for x ∈ (R,L−R), Eq. (8) becomes

p2(x) = 1− e−
∫ R
0
gCv (‖x−y‖)ρdy−

∫ L
L−R

gCv (‖x−y‖)ρdy

= 1− e−
∫ R
x−r

ρdy−
∫ x+r
L−R

ρdy.

So substitute p2(x) into Eq. (12),

pa =
2R

L
+

1

L

∫ L−R−r

R

(1− e−ρ(R+r−x))dx

+
1

L

∫ R+r

L−R−r
(1− e−ρ(2R+2r−L))dx

+
1

L

∫ L−R

R+r

(1− e−ρ(R+r+x−L))dx

= 1 +
2

ρL
(e−ρr − e−ρ(2R+2r−L))

− 2R+ 2r − L
L

e−ρ(2R+2r−L).

(IV) For L > 2R+ 2r,
From Eq. (8)

p2(x) =



1− e−
∫ R
x−r

ρdy = 1− e−ρ(R+r−x)

when x ∈ (R,R+ r],

1− e−
∫ x+r
L−R

ρdy = 1− e−ρ(R+r+x−L)

when x ∈ [L−R− r, L−R),
0 when x ∈ (R+ r, L−R− r).

So substituting p2(x) into Eq. (12),

pa =
2R

L
+

1

L

∫ R+r

R

(1− e−ρ(R+r−x))dx

+
1

L

∫ L−R

L−R−r
(1− e−ρ(R+r+x−L))dx

=
2R+ 2r

L
+

2(e−ρr − 1)

ρL
.

To derive the equations for the connectivity probability
(exact result), we first look at Lemma 4. For the unit disk
model, p1(x) is 1 when x ∈ [0, R] ∪ [L − R,L] and zero
otherwise. Hence, Eq. (15) becomes

pY (y) =
1

(min(2R,L))n
(19)

when yi ∈ [0, R]∪[L−R,L],∀yi, and zero otherwise. Eq. (16)
becomes

pc(y) = e−
∫ L−R
R

ρ
∏n

i=1(1−g
C
v (‖x−yi‖))dx. (20)

Note that
∏n
i=1(1 − gCv (‖x − yi‖)) is 1 when ‖x − yi‖ > r

for all yi. For L ≤ 2R, we can easily obtain pc from Eq. (18)
by substituting Eq. (19) and (20) into it (will be shown later).
To obtain the result for L > 2R, the following transformation
will simplify the arithmetic work.
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Let Sa (and Sb) be the set of vehicles in [0, R] (and [L −
R,L]) which, by definition, are also in K1. Let N (Sa) (and
N (Sb)) be the number of vehicles in Sa (and Sb). Note that
Sa∪Sb = K1 and N (Sa)+N (Sb) = N (K1). Let ya (and yb)
be the location of the vehicle in Sa (and Sb) which is furthest
from BS1 (and BS2). That is,

ya =

{
0 if Sa = ∅
max{y : y ∈ Sa} otherwise,

(21)

yb =

{
L if Sb = ∅
min{y : y ∈ Sb} otherwise.

(22)

Therefore, the cumulative probability function of pa is

Pr(ya ≤ ymax) = Pr(yi ≤ ymax,∀yi ∈ Sa)

= (
ymax
R

)na for na = N (Sa) ≥ 1.

With Eq. (21) defines ya = 0 when N (Sa) = 0, we have the
pdf of ya as

fa(ya;na) =

{
na

R (yaR )na−1 if na ≥ 1

δ(ya) if na = 0.

Similarly we have the pdf of yb as

fb(yb;nb) =

{
nb

R (L−ybR )nb−1 if nb ≥ 1

δ(L− yb) if nb = 0.

With ya and yb, we can rewrite Eq. (20) into

pc(ya, yb) = e
−

∫ min{L−R,yb−r}
max{R,ya+r} ρdx

, (23)

and Eq. (18) can be transformed into

pc =

∞∑
na=0

∞∑
nb=0

Pr(N (Sa) = na) Pr(N (Sb) = nb)[∫ R

0

∫ L

L−R
pc(ya, yb)fa(ya;na)fb(yb;nb)dybdya

]
(24)

for L > 2R. Eq. (24) can be further simplified under different
cases. For na > 0 and nb > 0, Eq. (24) becomes

p(na>0,nb>0)
c

=

∫ R

0

∫ L

L−R
pc(ya, yb)

[ ∞∑
na=1

∞∑
nb=1

Pr(N (Sa) = na)

Pr(N (Sb) = nb)fa(ya;na)fb(yb;nb)] dybdya

=

∫ R

0

∫ L

L−R
pc(ya, yb)

[ ∞∑
na=1

∞∑
nb=1

(ρR)na

na!
e−ρR

(ρR)nb

nb!
e−ρR

na
R

(
ya
R
)na−1nb

R
(
L− yb
R

)nb−1
]
dybdya

=

∫ R

0

∫ L

L−R
pc(ya, yb)ρ

2e−2ρR[ ∞∑
na=1

(ρya)
na−1

(na − 1)!

][ ∞∑
nb=1

(ρ(L− yb))nb−1

(nb − 1)!

]
dybdya

=

∫ R

0

∫ L

L−R
pc(ya, yb)ρ

2e−2ρReρyaeρ(L−yb)dybdya. (25)

For na = 0 and nb > 0, Eq. (24) becomes

p(na=0,nb>0)
c

=

∞∑
nb=1

e−ρR
(ρR)nb

nb!
e−ρR

[∫ L

L−R
pc(0, yb)

nb
R

(
L− yb
R

)nb−1dyb

]

=

∫ L

L−R
pc(0, yb)ρe

−2ρR
∞∑

nb=1

(ρ(L− yb))nb−1

(nb − 1)!
dyb

=

∫ L

L−R
pc(0, yb)ρe

−2ρReρ(L−yb)dyb. (26)

With similar steps (omit here) we can obtain for na > 0 and
nb = 0, Eq. (24) becomes

p(na>0,nb=0)
c =

∫ R

0

pc(ya, L)ρe
−2ρReρyadya. (27)

Note that it can be shown that Eq. (27) equals to (26) by letting
yb = L− ya, then

p(na>0,nb=0)
c =−

∫ L−R

L

pc(L− yb, L)ρe−2ρReρ(L−yb)dyb

=

∫ L

L−R
pc(0, yb)ρe

−2ρReρ(L−yb)dyb

where pc(L − yb, L) = pc(0, yb). Finally for na = 0 and
nb = 0,

p(na=0,nb=0)
c = e−ρRe−ρRpc(0, L) = e−2ρRe−

∫ L−R
R

ρdx

= e−2ρRe−ρ(L−2R) = e−ρL. (28)

Using Eq. (25), (26), (27) and (28), we can obtain the
connectivity probability as follows. Due to the lengthy (but
straightforward) steps involved to derive the results, we omit
the intermediate steps and only include the results of Eq. (25)
and (26) for readers’ convenience.

(I) For 0 < L ≤ 2R,
pY (y) =

1
Ln from Eq. (15) and pc(y) = 1 from Eq. (16)

implies that

pc =

∞∑
n=0

Pr(N (K1) = n) = 1.

(II) For 2R < L ≤ 2R+ r,

p(na>0,nb>0)
c = 1 + e−ρL − 2e−ρR + e−ρ(3R+r−L)

+ (−1

4
− 1

2
ρ(L− 2R))e−ρ(2R+2r−L)

− e−ρ(L+r−R) +
1

4
e−ρ(L+2r−2R),

p(na=0,nb>0)
c = − e−ρL + e−ρR − 1

2
e−ρ(3R+r−L)

+
1

2
eρ(L+r−R),

pc = 1 +
1

4
e−ρ(L+2r−2R)

+ (−1

4
− 1

2
ρ(L− 2R))e−ρ(2R+2r−L).
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(III) For 2R+ r < L ≤ 2R+ 2r,

p(na>0,nb>0)
c

= 1 + e−ρL +
1

2
e−ρ(L−2R) − e−ρ(L+r−R)

+ (−3

4
− 1

2
ρ(2R+ 2r − L))e−ρ(2R+2r−L)

+
1

4
e−ρ(L+2r−2R) − e−ρ(L−R−r),

p(na=0,nb>0)
c

= −e−ρL +
1

2
e−ρ(L+r−R) +

1

2
e−ρ(L−R−r),

pc = 1 +
1

2
e−ρ(L−2R) +

1

4
e−ρ(L+2r−2R)

+ (−3

4
− 1

2
ρ(2R+ 2r − L))e−ρ(2R+2r−L).

(IV) For L > 2R+ 2r,

p(na>0,nb>0)
c

= e−ρL +
1

4
e−ρ(L+2r−2R) − e−ρ(L+r−R)

+
1

4
e−ρ(L−2R−2r) − e−ρ(L−R−r) + 1

2
e−ρ(L−2R),

p(na=0,nb>0)
c

= −e−ρL +
1

2
e−ρ(L+r−R) +

1

2
e−ρ(L−R−r),

pc =
1

4
e−ρ(L+2r−2R) +

1

4
e−ρ(L−2R−2r) +

1

2
e−ρ(L−2R).

B. Log-normal Shadowing Model

The log-normal model L is commonly used to model the
real world signal propagation where the transmit power loss
increases logarithmically with the Euclidean distance between
two wireless nodes and varies log-normally due to the shad-
owing effect caused by surrounding environment. In the log-
normal model, we formulate the received power (in dB) at a
destination vehicle as

prx = p0 − 10α log10
l

d0
+Nσ (29)

where prx is the received power (in dBmW) at the destination
vehicle; p0 is the power (in dBmW) at a reference distance d0;
α is the path loss exponent; Nσ is a Gaussian random variable
with zero mean and variance σ2; l is the Euclidean distance
between the two vehicles (or a vehicle and a BS depending on
the context). A source vehicle can establish a direct connection
to a destination vehicle if the received power at the destination
vehicle prx is greater than or equal to a certain threshold
power pvth. Similarly, a source vehicle can establish a two-way
direct connection to a destination BS if the received power at
the destination BS prx is greater than or equal to a certain
threshold power pbth. In this paper, we assume that wireless
connections between vehicles, and between vehicles and BSs,
are symmetric. Note that when σ = 0, the log-normal model
reduces to the unit disk model. Due to this fact, we assign
pvth = p0 − 10α log10

r
d0

, pbth = p0 − 10α log10
R
d0

so that
the results under log-normal model can be compared with the

results under the unit disk model later. It can be shown that
under the log-normal model

gLv (x) = Pr(prx ≥ pvth) = Q(
10α

σ
log10

x

r
).

where function Q(y) = 1√
2π

∫∞
y
e−

x2

2 dx is the tail probabil-
ity of the standard normal distribution. Similarly, gLb (x) =
Q( 10ασ log10

x
R ). When σ = 0, gLv (x) = Pr(x ≤ r),

gLb (x) = Pr(x ≤ R) and the log-normal model becomes the
unit disk model as expected.

The access probability can then be obtained for different
values of α and σ by computing Eq. (12) using any numerical
integration technique. The approximate and exact results for
the connectivity probability can be obtained by computing
Eq. (13) and (18) using any numerical integration technique.

VI. ANALYTICAL AND SIMULATION RESULTS

A. Unit Disk Model

Fig. 3. Access probability with L changing under the unit disk model,
R = 1000m, r = 500m, ρ = 1/5, 1/50, 1/500 vehicles/m respectively.

Fig. 3 shows the access probability given different values of
L and ρ. The analytical results are verified by the simulation
results which are obtained from 40000 randomly generated
network topologies. As the number of instances of random
networks used in the simulation is very large, the confidence
interval is too small to be distinguishable and hence ignored
in this plot as well as other plots. As shown in the figure,
the access probability decreases with L when L exceeds some
limits. For small ρ, the access probability decreases as soon
as L > 2R. That is because when the vehicle density ρ
(number of vehicles per meter) is low, a vehicle is either
directly connected to a BS or disconnected, i.e cannot reach
any BS in at most two hops. It is hard for the vehicle to find
a one-hop relay in its range via which it can access a BS if
it is not within the transmission range of any BS. However
for large ρ, it is easier for the vehicle, which is not within
the transmission range of any BS, to find a one-hop relay to
access the BS. In general the access probability increases with
an increase in ρ, and the reason is that when the vehicle density
increases, the probability increases for vehicles in the gap of
the transmission ranges of BSs to find a neighbor within the
transmission range of a BS to act as a relay.

Similarly, Fig. 4 shows the connectivity probability for
different values of L and ρ. The exact analytical results are
verified by the simulation results. The approximate analytical



9

Fig. 4. Connectivity probability with L changing under the unit disk model,
R = 1000m, r = 500m, ρ = 1/5, 1/50, 1/500 vehicles/m respectively.

result is shown to be reasonably close to the exact analytical
result. The figure shows that when L ≤ 2R+r = 2500 meters,
it is easy for all vehicles to be connected to either BS in at
most two hops, hence the connectivity probability is high. As
L gets larger, it is harder for all vehicles to be connected
to the BSs due to the larger possible distances between the
vehicles and the BSs. This causes a drop in the connectivity
probability, and the connectivity probability tends to zero as L
goes to infinity. The transition of the connectivity probability
from 1 to 0 gets sharper as the vehicle density increases. As ρ
goes to infinity, the transition happens at the critical distance
L = 2R + 2r = 3000 meters, below which the network is
disconnected with a high probability and above which the
network is connected with a high probability. Furthermore, the
networks with a larger ρ have a higher connectivity probability
than the networks with a smaller ρ when L is small. This
is because when the vehicle density is large, it is easier for
vehicles not directly connected to a BS to find a vehicle within
its communication range and is directly connected to a BS to
act as a relay. When L is large, the networks with a larger ρ
have a lower connectivity probability than the networks with
a smaller ρ. This is because at large values of L when the
vehicle density is large it is easier to have at least one vehicle
which is located too far from the BSs to be connected to a BS
in at most two hops.

Fig. 5. Access probability with r changing under the unit disk model, R =
1000m, L = 2500m, ρ = 1/5, 1/50, 1/500 vehicles/m respectively.

Fig. 5 shows how the transmission range of the vehicles
r affect the access probability. It shows that the access
probability increases with r, and when ρ is large enough, the
access probability could be quite close to 1. And it shows

again that the access probability increases with an increase in
ρ.

Fig. 6. Connectivity probability with r changing under the unit disk model,
R = 1000m, L = 2500m, ρ = 1/5, 1/50, 1/500 vehicles/m respectively.

With a similar setup, Fig. 6 shows the sensitivity of the
connectivity probability to r. For a large ρ, around a certain
value of r a small increase in r will incur a dramatic increase
in the connectivity probability from near 0 to near 1, i.e. the
well-known phase transition phenomenon. From the figure it
shows that such phenomenon does not exist for small ρ. Fig. 6
also shows a scenario where there may be a significant gap
between the approximate and exact results for connectivity
probability.

Fig. 7. Access probability with ρ changing under the unit disk model, L,
R, r are constants.

Fig. 7 supported our conclusion that an increase in ρ will
improve the access probability as it shows that the access prob-
ability monotonically increases with ρ. While ρ is relatively
small, and the width of the gap region not directly covered
by any of the BSs is relatively large, the access probability
will be low, and thus, in this circumstance, network operator
should consider to deploy more BSs along the highway for
better connectivity and greater access probability.

B. Log-normal Shadowing Model

Fig. 8 shows the access probability under the log-normal
shadowing model. In general, it is easier for the vehicles in
the subnetwork to get access to any BS under the log-normal
model. As σ increases, the access probability improves. The
improvement in access probability is more significant for high
vehicular density.

Fig. 9 shows the connectivity probability under the log-
normal model when the vehicle density is low (ρ = 1

500 vpm).
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Fig. 8. Access probability with L changing under the log-normal model,
R = 1000m, r = 500m, ρ = 1/5, 1/500 vehicles/m respectively under
different values of σ.R (r) is the transmission range of a BS (vehicle) ignoring
shadowing effect, i.e. σ = 0.

Fig. 9. Connectivity probability with L changing under the log-normal model,
R = 1000m, r = 500m, ρ = 1/500 vehicles/m under different values of σ.
R (r) is the transmission range of a BS (vehicle) ignoring shadowing effect,
i.e. σ = 0.

The exact analytical results are verified by the simulation
results. As the vehicle density increases, the computational
complexity involved in numerically computing the exact result
increases very quickly. As such, we only provide the exact
analytical results for low vehicle density. Furthermore, Fig. 9
shows that the approximate analytical results are reasonably
close to the true values when the vehicle density is low.
However, as shown in Fig. 10, the discrepancy between the
approximate results and the true values can be significant when
the vehicle density is high (ρ = 1

50 ,
1
5 vpm). In general,

the approximate analytical result always under-estimate the
simulation result. Same situation can be observed for the
result under the unit disk model. This can be explained by
Lemma 3 that a vehicle is more likely to be able to access to
any BS where there is another vehicle nearby that can access
to the BSs. Because of the independence assumption used in
obtaining the approximate analytical result, the approximate
result will under-estimate the true value.

VII. CONCLUSIONS

In this paper, we analyzed the connectivity probability
and the access probability for a given network bounded by
two adjacent base stations, and vehicles in the network are
Poissonly distributed with known density and each vehicle can
communicate with a base station in at most two hops. Under

Fig. 10. Connectivity probability with L changing under the log-normal
model, R = 1000m, r = 500m, ρ = 1/5, 1/50 vehicles/m respectively
under different values of σ. R (r) is the transmission range of a BS (vehicle)
ignoring shadowing effect, i.e. σ = 0.

a general connection model, and later on taking the unit disk
communication model and the log-normal shadowing model
as the specific examples, we derived closed-form formulas for
the access probability and connectivity probability considering
that the base stations and the vehicles have different trans-
mission capabilities. These formulas characterize the relation
between these key parameters, i.e. the transmission ranges
of the base stations and the vehicles, the distance between
adjacent base stations, the vehicle density and their impact
on the access and connectivity probabilities. These results can
be useful for a network operator to design a network with a
given level of access guarantee. In future, we plan to extend
the current work on 1-D networks to 2-D networks.
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