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Abstract—In modern mobile communication networks, such
as 3G and 4G networks, sectorized antennas have been widely
used to divide each cell into multiple sectors in order to improve
coverage, spectrum efficiency and quality of service. Large-scale
path loss from a transmitting antenna to a receiving antenna
should include (1) propagation attenuation that depends on trans-
mission distance, (2) shadowing that depends on surrounding
environment, and (3) antenna loss that depends on a sectorized
antenna pattern and transmission angle. An in-depth analysis of
statistical characteristics of large-scale path losses involving with
these three factors is crucial for the design, operation, evaluation
and optimization of modern sectorized wireless networks. In this
paper, a sectorized antenna pattern is for the first time considered
in the derivation of a closed-form expression of a probability
density function (PDF) of large-scale path losses. Specifically, we
first discover that the normalized PDF of propagation attenuation
plus shadowing, which can be approximated by the Gaussian
mixture model (GMM) with all system parameters, is fully
determined by our newly-defined metric 10

ln 10
β
σs

, namely the
attenuation exponent β to standard deviation of shadowing σs
ratio (ASR). The convolution of GMM and antenna loss statistics
is elaborately transformed to a series of differential equations.
A closed-form PDF of large-scale path losses with sectorized
antenna pattern can be obtained by solving these differential
equations. To reduce the computational complexity, we further
prove that the exciting sources of these differential equations
can be tightly approximated by weighted Gaussian functions
and, thus, the final solutions (i.e. PDF of path losses) can be
derived in the form of Gaussian and Dawson functions. Our
analytical results are verified by extensive numerical computation
and Monte Carlo simulation results, e.g. the impact of ASR on
the shape of PDF of propagation attenuation plus shadowing.
Compared with traditional Gaussian-fitting approach, our newly-
derived PDF of large-scale path losses with sectorized antenna
patterns is at least two orders of magnitude more accurate
in terms of Kullback-Leibler (KL) divergence under typical

This work is partially sponsored by the National Natural Science Foundation
of China under grant 61571303; the International Science and Technology
Cooperation Program of China under grant 2014DFA11640; the Shanghai
Natural Science Foundation under grant 15ZR1439700; the Science and
Technology Commission Foundation of Shanghai under grant 15511102602.

J. Xu, X. Yan, Y. Zhu, J. Wang and Y. Yang are with the Key Laboratory of
Wireless Sensor Network & Communication, Shanghai Institute of Microsys-
tem and Information Technology (SIMIT), Chinese Academy of Sciences
(CAS), Shanghai, 200050, P. R. China. They are also with the Shanghai
Research Center for Wireless Communications(WiCO), Shanghai, 201210, P.
R. China. Y. Yang is the corresponding author. (Email: yang.yang@wico.sh,
Tel: +86 21 60213033)

X. Ge is with the School of Electronic Information and Communications,
Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.
R. China. (Email: xhge@mail.hust.edu.cn)

G. Mao is with the School of Computing and Communications, U-
niversity of Technology Sydney, NSW 2007, Australia. (Email: guo-
qiang.mao@uts.edu.au)

O. Tirkkonen is with the Department of Communications and Networking,
Aalto University, Electrical Engineering Building, Otakaari 5, 02150 Espoo,
Finland. (Email: olav.tirkkonen@aalto.fi)

propagation attenuation and shadowing conditions.

Index Terms—Path loss, outage probability, probability density
function, Gaussian mixture model, Dawson function

I. INTRODUCTION

IN 3GPP standard TR 36.814 [1], path losses including the
propagation attenuation1, shadowing and antenna pattern is

one of the key metrics for the design, planning and optimiza-
tion of cellular networks. Models of path losses are generally
based on field measurements for given frequency ranges and
particular network deployment scenarios. To obtain a prob-
ability density function (PDF) of path losses, enough path
loss samples should be generated with certain configuration of
the base station (BS), cell radius, deployment scenarios and
specific distribution of user equipments (UEs). Simulations
cannot theoretically show the impacts of channel parameters
on the PDF of path losses. In the third generation (3G) cellular
communication systems, to avoid the near-far [2] [3] problem,
path losses are fully compensated and the received power of
the desired signal at the BS from all the UEs is the same.
In Long Term Evolution (LTE) and LTE-Advanced systems,
the fractional power control [1] partially compensates path
losses and makes a good trade-off between the cell edge
user throughput and cell throughput. Therefore, the received
signal to interference plus noise ratio of the 3GPP LTE uplink
transmission is closely related to the path loss. In existing and
future cellular networks [4] [5], antennas are often sectorized.
The accurate parameterized PDF of path losses in sectorized
networks can enable the tractable performance analysis [6] [7]
[8] and give deep insight into the configuration of the power
control and inter-cell interference mitigation [9] [10] [11] [12].

Recently, several approaches have been developed to inves-
tigate the PDF of path losses for cellular networks where BSs
are equipped with omni-directional antennas. PDFs of path
losses between the center of a circle and uniformly distributed
UEs within the circle are derived in [13] [14]. In [14], the
Kullback-Leibler (KL) divergence [15] is utilized to measure
the difference between the derived PDF and the Gaussian
distribution. Simulation results show that the KL divergence
decreases with the increase of the standard deviation of the
shadowing. In addition, the PDF of path losses is computed in
a 3G cellular network comprised of 256 sectors. The outage
probability based on the PDF of path losses for uniformly
distributed UEs within the circle is investigated in [16]. For

1Propagation attenuation is also known as distance-dependent path loss
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Gaussianly distributed UEs in cellular networks, the closed-
form PDF of path losses is derived in [17] through the Taylor
series expansion. Nevertheless, it is difficult to see the impact
of the parameters of the BS, cell radius and deployment
scenarios on the PDF of path losses. In [18], the exact
analytical and approximate closed-form PDF of path losses for
a hexagonal-shaped cell is derived and compared to the PDF
of path losses for the circular cell. Further, the PDF of path
losses for uniformly distributed UEs in the triangle-shaped cell
or rhombus-shaped cell are presented in [19]. The PDF of
path losses given in [20] takes the small-scale channel fading,
propagation attenuation and shadowing into consideration. The
PDF of the received power is derived in [21] with two mobility
models when the wireless channel is assumed to have a
small scale fading of Rayleigh distribution and attenuation
exponent of 4. However, in the above research, the impacts of
channel parameters such as attenuation exponent and standard
deviation of the shadowing on the PDF of path losses are not
analyzed theoretically and existing results cannot be directly
utilized to derive a closed-form PDF of path losses for cellular
networks where BSs are equipped with sectorized antennas.

The main obstacle to obtain the PDF of path losses in close
form is the three-fold convolution related to the PDF of the
propagation attenuation, shadowing and antenna pattern. In
this paper, the impacts of attenuation exponent and standard
deviation of shadowing on the shape of the PDF of path losses
are theoretically analyzed through higher-order statistics. And
the approximate PDF of path losses in close form is derived
for uniformly distributed UEs in sectorized cellular networks.
First, the PDF of the addition of the propagation attenuation
and shadowing is elaborately parameterized by the Gaussian
mixture model (GMM). The PDF of path losses can be
approximately expressed as the sum of several convolutions
of the Gaussian function and PDF of the antenna pattern.
Then Each convolution is transformed to the solution of a
differential equation. The solution of the differential equation
can be approximately expressed in the form of the Dawson
function [22] and Gaussian function. And the relative error of
the approximate solution is bounded by the least upper bound
of that of the approximation of the exciting source. With the
empirical channel model, extensive numerical and simulation
results not only verify the accuracy of the closed-form PDF
of path losses but also show the usefulness of the closed-
form PDF in the design of the cell size with a given outage
threshold. The main contributions of this paper are as follows:

1) We discover the normalized PDF of propagation attenu-
ation plus shadowing is fully determined by our newly-
defined metric 10

ln 10
β
σs

, namely attenuation exponent to
standard deviation of shadowing ratio (ASR).

2) The PDF of propagation attenuation plus shadowing is
approximated by the GMM with all system parameters.

3) We derive the closed-form PDF of large-scale path losses
with sectorized antenna patterns in the form of Gaussian
and Dawson functions, which is at least two orders
of magnitude more accurate than traditional Gaussian-
fitting approach under typical propagation attenuation
and shadowing conditions.

The rest of the paper is organized as follows. The system
model and problem formulation are presented in Section II. In
Section III, the theoretical analysis with the empirical channel
model is performed to study the key metric of the PDF of
the sum of the propagation attenuation and shadowing. And
the GMM is utilized to parameterize the PDF of the sum of
the propagation attenuation and shadowing. In Section IV,
the convolution of the Gaussian function and the PDF of
the antenna pattern is solved through the differential equation
whose exciting source is approximated as a weighted Gaussian
function. Numerical results are presented in Section V. Finally,
some conclusions are made in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Layout

Without loss of generality, a three-sector circular cell layout
is depicted in Fig. 1 where the polar coordinate system is used
to describe node locations. The cell radius is R, and the cell

R
D

Θ

( ) ! 

Fig. 1. Three-sector cell layout.

BS is located at the origin. The antenna boresight point in
the direction of the arrows. UEs are uniformly distributed in
each sector. The distance between the BS and UE is D, and
the angle relative to the boresight pointing direction is Θ. For
uniformly distributed UEs, the PDFs of D and Θ are

fD (d) =
2d

R2
, 0 ≤ d ≤ R, (1a)

fΘ (θ) =
k

2π
, −π /k ≤ θ ≤ π /k , (1b)

respectively, where k is the number of sectors. In Appendix
A, it is proved that D and Θ are independent.

B. Propagation Attenuation

The propagation attenuation in dB can be expressed as

L1 = PL0 + 10β log10

D

d0
, (2)
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where PL0 is the path loss at the reference distance d0, and
β is the attenuation exponent.

To simplify the description, we introduce the random vari-
able X = 10β log10

D
d0

. L1 can be rewritten as

L1 = PL0 +X. (3)

As PL0 is a constant, studying the statistical characteristics of
L1 is equivalent to characterizing X . The PDF of the random
variable X can be expressed as

fX (x) =
γ exp (γx)

R2
, x ∈ (−∞, 10β log10R] , (4)

where

γ =
ln 10

5β
. (5)

C. Antenna Loss
The antenna gain G (θ) [23] at the BS can be expressed as

G (Θ) = GB +A (Θ) , (6)

where GB is the maximum antenna gain plus cable loss and
A (·) is the antenna pattern. Due to the limitation of the size
of UE, it is reasonable to assume that UE is equipped with the
omni-directional antenna [24] [25]. The antenna pattern A (·)
[26] [27] for the k-sector cell site is

A (Θ) = −min
(

12 (Θ /θk )
2
, Am

)
, (7)

where θk = 7
6
π
k is the 3 dB beam-width in degrees and

Am is the maximum attenuation, i.e., the front-to-back ratio.
Conventional values for Am would be 20dB and 23dB when
the number of sectors is three and six, respectively. The
antenna loss resulting from the antenna pattern is defined as

Z = min
(

12 (Θ /θk )
2
, Am

)
. (8)

Because UEs are distributed in the serving cell and the angle
θ is in the range [−π /k , π /k ], 12 (Θ /θk )

2 is always less
than Am. Therefore the antenna loss Z can be rewritten as

Z = 12 (Θ /θk )
2
, −π /k ≤ Θ ≤ π /k . (9)

The PDF of Z can be expressed as

fZ (z) =
kθk
24π

( z
12

)− 1
2

, z ∈
[
0,

12π2

k2θ2
k

]
. (10)

D. Path Loss
Denote the dB-domain shadowing of the link between the

BS and UE as the random variable S. S can be modeled as
a zero-mean, normally distributed random variable with the
standard deviation σs dB.

Path losses consisting of the propagation attenuation, shad-
owing and antenna loss can be expressed as

L = PL0 −GB +X + S +Z. (11)

Since X , S and Z are independent from each other [28] and
the two constants PL0 and GB yield a simple linear shift, the
PDF of path losses L can be expressed as

fL = fX (x)⊗ fS (s)⊗ fZ (z) , (12)

where ⊗ is the convolution operation and fS (s) is the PDF
of S.

III. ANALYSIS OF PROPAGATION ATTENUATION PLUS
SHDOWING

The sum of the propagation attenuation and shadowing can
be expressed as

Y = PL0 −GB +X + S. (13)

In this section, theoretical analysis based on cumulants is
performed for Y , and the PDF of Y is parameterized by the
GMM.

A. Theoretical Analysis

We concentrate on the addition of X and S. The n-th
original moment of X can be expressed as

mn
X = (10β log10R)

n − n

γ
mn−1
X , n = 2, 3, 4, . . . (14)

With the relationship [29] between the original moment and
cumulant, the cumulants of the random variable X can be
expressed as

c1X =
10β

ln 10
(lnR− 1 /2) , c2X =

(
10β

ln 10

)2

/4 ,

c3X = −
(

10β

ln 10

)3

/4 , c4X = 3

(
10β

ln 10

)4

/8 ,

c5X = −3

(
10β

ln 10

)5

/4 , . . . (15)

Because X and S are independent, and the shadowing S is
a zero-mean Gaussianly distributed random variable with the
standard deviation σs dB, the normalized cumulants of Y are

c̃1X+S = 0, c̃2X+S = 1, c̃3X+S = −1

4

(
10

ln 10
β
σs

)3[(
10

ln 10
β
σs

)2
/4 + 1

] 3
2

,

c̃4X+S =
3

8

(
10

ln 10
β
σs

)4[(
10

ln 10
β
σs

)2
/4 + 1

]2 ,
c̃5X+S = −3

4

(
10

ln 10
β
σs

)5[(
10

ln 10
β
σs

)2
/4 + 1

] 5
2

, . . . (16)

If the cumulants of orders higher than two asymptotically
approach zero, the corresponding distribution is asymptoti-
cally normal. Therefore the metric 10

ln 10
β
σs

defined as ASR
determines the shape of the PDF of Y . When the ASR is
small, the PDF can be approximated as the normal distribution.
Otherwise, the PDF will greatly deviate from the normal
distribution. In other hand, if the ASRs are equal for different
values of the attenuation exponent and standard deviation of
the shadowing, the corresponding PDFs of the normalized Y
are identical. From (15), we can see that the mean of Y is
determined by the path loss at the reference distance PL0,
antenna gain GB , cell radius R and attenuation exponent β.
The variance of Y only depends on the attenuation exponent
β and standard deviation of the shadowing σs.
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B. Gaussian Mixture Model

With the results derived in [13] [14], the PDF of Y can be
expressed as

fY (y) = c0 exp (q0y0) erfc (y0) , (17)

where

c0 =
ln 10

10βR2
exp

[
2σ2

s (ln 10)
2 − 20PL0β ln 10

(10β)
2

]
(18a)

× exp

(
b0 ln 10

5β

)
, (18b)

q0 =

√
2 ln 10

5

σs
β
, y0 =

y − b0√
2σs

, (18c)

b0 =PL0 −GB + 10β log10R−
2 (ln 10)σ2

s

10β
. (18d)

If fY (y) is directly approximated by the GMM, the impact
of network parameters on the PDF of Y cannot be shown
explicitly. On the other hand, as the limit of erfc (x) as x
approaches negative infinity is 2, the function erfc (·) cannot
be approximated by the GMM. To parameterize fY (y) with
the GMM, (17) is rewritten as

fY (y) = c0
exp (q0y0)

p (y0)
g (y0) , (19)

where

g (y0) = p (y0) erfc (y0) . (20)

If the limit of g (y0) as y0 approaches infinity is 0, g (y0) may
be approximated by the GMM. To simplify the derivation,
p (y0) is chosen as exp (y0) to satisfy the above condition.
The function g (y0) can then be expressed as

g (y0) = exp (y0) erfc (y0) . (21)

Considering g (y0) as a function of y0 and all the network
parameters are included in the intermediate variable y0, g (y0)
is independent of network parameters. Furthermore, g (y0) can
be tightly approximated by the M -order GMM as

g (y0) ≈ gM (y0) =
M∑
i=1

ai exp

[
− (y0 − ui)2

(2σ2
i )

]
. (22)

Since g (y0) is independent of network parameters, the perfor-
mance of gM (y0) in terms of y0 is also independent of net-
work parameters which are all retained in c0 exp ((q0 − 1) y0).
Using the trust region algorithm [30] [31], the parameters ai,
ui and σi for M = 2, 4, 6, 8 can be found, and the results are
listed in Table I. The performance of the GMM approximation
is depicted in Fig. 2. After the normalization of gM (y0) and
g (y0), the KL divergence can be used to the measure the
performance of the GMM approximation. The KL divergence
of the GMM approximation from g (y0) is presented in Table
II. It can be seen that when the order of the GMM is not less
than four, the GMM can provide satisfactory performance.
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Fig. 2. g (y0) and its GMM approximation.

Substituting (22) into (19), the PDF of Y can be rewritten
as

fY (y) ≈ fY ,M (y)

= c0

M∑
i=1

ãi

√
2πσ̃2

i

1√
2πσ̃2

i

exp

[
− (y − ũi)2

(2σ̃2
i )

]
,

(23)
where

ãi = ai exp

{[(
ui +

q0 − 1

2
2σ2

i

)2

− u2
i

]/(
2σ2

i

)}
,

(24a)

ũi = b0 +
√

2σs

(
ui +

q0 − 1

2
2σ2

i

)
, σ̃i =

√
2σsσi. (24b)

To be a PDF, the approximated function fY ,M (y) needs to be

TABLE I
PARAMETERS OF GMM

Order ai ui σi

M=2 0.8397 −0.02036 1.139
/√

2

0.2782 −1.268 1.737
/√

2

M=4

0.6377 0.1862 1.039
/√

2

0.3969 −0.568 1.182
/√

2

0.02941 −2.889 2.319
/√

2

0.1593 −1.522 1.558
/√

2

M=6

0.7937 0.1268 1.06
/√

2

0.232 −0.7288 1.059
/√

2

0.1749 −1.25 1.275
/√

2

0.06415 −2.217 1.423
/√

2

0.02033 −3.277 1.796
/√

2

0.004299 −4.304 2.691
/√

2

M=8

0.8758 −0.04354 1.09
/√

2

0.2134 −1.089 0.9507
/√

2

0.09447 0.5655 0.9247
/√

2

0.1284 −1.931 0.9949
/√

2

0.03894 −2.911 1.018
/√

2

0.01358 −3.743 1.224
/√

2

0.007431 −4.163 1.855
/√

2

0.002163 −4.537 3.005
/√

2
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TABLE II
KL DIVERGENCE OF GMM APPROXIMATION

Order of GMM KL divergence
M = 2 1.85× 10−2

M = 4 4.98× 10−4

M = 6 3.93× 10−5

M = 8 7.76× 10−6

normalized as

f̂Y ,M (y) =
M∑
i=1

λiN
(
y; ũi, σ̃

2
i

)
, (25)

where

λi =
ãi
√

2πσ̃2
i

M∑
i=1

ãi
√

2πσ̃2
i

,

N
(
y; ũi, σ̃

2
i

)
=

1√
2πσ̃2

i

exp
[
− (y − ũi)2 /(

2σ̃2
i

)]
.

(26)

Numerical results in Section V show that the GMM is more
accurate than the Gaussian approximation. In the procedure to
get the GMM, we aim at σi as big as possible. The reason
will be given in sub-section B of Section IV.

IV. PROBABILITY DENSITY FUNCTION OF PATH LOSS
WITH SECTORIZED ANTENNA PATTERN

In this section, the approximate PDF of path losses L con-
sisting of the propagation attenuation, shadowing and antenna
loss is derived.

A. Convolution of Gaussian Function and PDF of Antenna
Loss

The PDF of path losses is the convolution of the PDF of Y
and Z

fL (l) =

∫ AL

0

fZ (z) fY (l − z) dz, (27)

where

AL =
12π2

k2θ2
k

. (28)

Substituting (25) into (27), the PDF of path losses can be
approximated as

f̃L (l) =
M∑
i=1

λifL,i (l) , (29)

where

fL,i (l) =

∫ AL

0

fZ (z)N
(
l − z; ũi, σ̃2

i

)
dz. (30)

Therefore the function f̃L (l) is the weighted sum of convo-
lutions of the PDF of the antenna loss and Gaussian function.
Differentiating (30), we get

f ′L,i (l) + Pi (l) fL,i (l) = Qi (l) , (31)

where

Qi (l) =
Q0

σ̃2
i

∫ AL

0

3
(√
AL
)−3√

z

2
√

2πσ̃2
i

exp

[
− (l − z − ũi)2

2σ̃2
i

]
dz,

(32a)

Pi (l) =
l − ũi
σ̃2
i

, (32b)

Q0 =
1

3
√

12σ̃2
i

A2
L. (32c)

The general solution of the above differential equation is

fL,i (l) = exp

(
−
∫ l

l0

Pi (s) ds

)

×

[∫ l

l0

Qi (t) exp

(∫ t

l0

Pi (s) ds

)
dt+ fL,i (l0)

]
.

(33)

The detailed proof is given in Appendix B. Since the integral
of Pi (l) is known, the obstacle to achieve a closed-form
expression for (33) is the integral of Qi (l). From (32a),
the normalized Qi (l) can be considered as the PDF of the
random variable Z3,i = Z1 + Z2,i where Z1 has the PDF
of 3

2

(√
AL
)−3√

z1, z1 ∈ [0, AL], and Z2,i is the Gaussian
random variable with the mean ũi and variance σ̃2

i . In the next
sub-section, we will prove that the PDF of Z3,i can be well
approximated as a Gaussian function.

B. Gaussian Approximation of Exciting Source

The n-th order original moment of Z1 can be expressed as

mn
Z1

=
3

2n+ 3
AnL. (34)

The cumulants of the Gaussian random variable Z2,i can be
written as

c1Z2,i
= ũi, c

2
Z2,i

= σ̃2
i , c

n
Z2,i

= 0, n > 2. (35)

Because Z1 and Z2,i are independent, the cumulants of Z3,i

are

c1Z3,i
=

2

5
AL + ũi, c2Z3,i

=
12

175
A2
L + σ̃2

i ,

c3Z3,i
= − 16

2625
A3
L, c4Z3,i

= − 1504

336875
A4
L,

c5Z3,i
=

45824

21896875
A5
L, . . . (36)

The cumulants of the normalized random variable Z̄3,i =
Z3,i−c1Z3,i√

c2Z3,i

can be expressed as

c1Z̄3,i
= 0, c2Z̄3,i

= 1, c3Z̄3,i
= −

16
2625(

12
175 + σ̃2

i /A2
L

) 3
2

,

c4Z̄3,i
= −

1504
336875(

12
175 + σ̃2

i /A2
L

)2 ,
c5Z̄3,i

=
45824

21896875(
12
175 + σ̃2

i /A2
L

) 5
2

, . . . (37)

We define the standard deviation to the maximum antenna loss
ratio (DLR) as σ̃i /AL . Equation (37) shows that the limit
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of the n-th order cumulant of Z̄3,i (n = 3, 4, 5, . . .) as DLR
approaches infinity is zero. When the 3 dB beam-width θk is
7
6
π
k as specified in [1] [27] and σ̃i is 4 dB, the cumulants of

Z̄3,i are

c1Z̄3,i
= 0, c2Z̄3,i

= 1, c3Z̄3,i
≈ −0.0424,

c4Z̄3,i
≈ −0.059, c5Z̄3,i

≈ 0.053, . . .
(38)

From (38), we can see that Z3,i can be well approximated as
the Gaussian random variable with the mean m1

Z3,i
= 2

5AL +

ũi and variance c2Z3,i
= 12

175A
2
L+σ̃2

i . The requirement to make
σi as big as possible (as stated in sub-section A of Section III)
will result in the cumulants of cn

Z̄3,i
of orders higher than two

approaching zero quickly. Therefore, when σ̃i is big enough,
the function Qi (l) defined in (32a) can be well approximated
as

Q̂i (l) =
Q0

σ̃2
i

1√
2πc2Z3,i

exp

−
(
l −m1

Z3,i

)2

2c2Z3,i

 . (39)

Numerical results in Section V show that this approximation
is accurate, especially when σ̃i is large.

C. Differential Equation with Approximated Exciting Source

With the approximated exciting source Q̂i (l), (31) can be
rewritten as

f̂ ′L,i (l) + Pi (l) f̂L,i (l) = Q̂i (l) , (40)

where f̂L,i (l) is the solution that can be written as

f̂L,i (l) =

(
exp

(
−
∫ l

l0

Pi (s) ds

))

×

[∫ l

l0

Q̂i (t) exp

(∫ t

l0

Pi (s) ds

)
dt+ f̂L,i (l0)

]
.

(41)

Replacing f̂L,i (l0) by fL,i (l0) which can be achieved through
a numerical computation, (41) can be rewritten as

f̂L,i (l) =

(
exp

(
−
∫ l

l0

Pi (s) ds

))

×

[∫ l

l0

Q̂i (t) exp

(∫ t

l0

Pi (s) ds

)
dt+ fL,i (l0)

]
.

(42)

To get a succinct expression and have deep insight into the
PDF of path losses, we assume

f̂L,i (l) = Gi (l) Q̂i (l) . (43)

Substituting (43) into (40), the differential equation can be
rewritten as

G′i (l) +
l − ug,i
σ̃2
g,i

Gi (l) = 1, (44)

where

ug,i =
c2Z3,i

ũi − σ̃2
im

1
Z3,i

c2Z3,i
− σ̃2

i

, σ̃2
g,i =

σ̃2
i c

2
Z3,i

c2Z3,i
− σ̃2

i

. (45)

Setting l0 = ug,i, the solution of (44) can be expressed as

Gi (l) =
√

2σ̃2
g,iD+

 l − ug,i√
2σ̃2

g,i


+ exp

[
− (l − ug,i)2

2σ̃2
g,i

]
Gi (ug,i) ,

(46)

where D+ (x) is the Dawson function that is defined as

D+ (x) = exp
(
−x2

) ∫ x

0

exp
(
t2
)
dt. (47)

Substituting (46) into (43), the function f̂L,i (l) can be ex-
pressed as

f̂L,i (l) =
√

2σ̃2
g,iQ̂i (l)D+

 l − ug,i√
2σ̃2

g,i


+ exp

[
− (l − ug,i)2

2σ̃2
g,i

]
Q̂i (l)Gi (ug,i) .

(48)

With f̂L,i (ug,i) = Q̂i (ug,i)Gi (ug,i), and replacing
f̂L,i (ug,i) by fL,i (ug,i), (48) can be rewritten as

f̂L,i (l) =Q̂i (l)


√

2σ̃2
g,iD+

(
l−ug,i√

2σ̃2
g,i

)
+ exp

[
− (l−ug,i)

2

2σ̃2
g,i

]
fL,i(ug,i)

Q̂i(ug,i)

 .

(49)
Substituting (49) into (29), the PDF of path losses consisting

of the propagation attenuation, shadowing and antenna loss can
be approximated as

f̂L (l) =
M∑
i=1

λiQ̂i (l)


√

2σ̃2
g,iD+

(
l−ug,i√

2σ̃2
g,i

)
+ exp

[
− (l−ug,i)

2

2σ̃2
g,i

]
fL,i(ug,i)

Q̂i(ug,i)

 .

(50)
With the PDF of path losses in close form, the outage
probability [6] that path losses are greater than the outage
threshold lout can be computed by

Pout =

∫ +∞

lout

f̂L (l) dl. (51)

D. Error Analysis

Without loss of generality, assuming l ≥ l0, the relative
error between f̂L,i (l) and fL,i can be expressed as∣∣∣∣∣ f̂L,i (l)− fL,i (l)

fL,i (l)

∣∣∣∣∣
=

∣∣∣∣∣∣
∫ l
l0

(
Q̂i (t)−Qi (t)

)
exp

(∫ t
l0
Pi (s) ds

)
dt∫ l

l0
Qi (t) exp

(∫ t
l0
Pi (s) ds

)
dt+ fL,i (l0)

∣∣∣∣∣∣
=

∣∣∣∫ ll0 Q̂(t)−Qi(t)
Qi(t)

Qi (t) exp
(∫ t

l0
Pi (s) ds

)
dt
∣∣∣∫ l

l0
Qi (t) exp

(∫ t
l0
Pi (s) ds

)
dt+ fL,i (l0)
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≤
sup
l0≤t≤l

∣∣∣ Q̂i(t)−Qi(t)
Qi(t)

∣∣∣ ∫ ll0 Qi (t) exp
(∫ t

l0
Pi (s) ds

)
dt∫ l

l0
Qi (t) exp

(∫ t
l0
Pi (s) ds

)
dt+ fL,i (l0)

≤ sup
l0≤t≤l

∣∣∣∣∣ Q̂i (t)−Qi (t)

Qi (t)

∣∣∣∣∣ . (52)

We can see that the relative error of the approximation to
the PDF of path losses is upper bounded by the least upper
bound of that of the Gaussian approximation to Qi (l) in the
differential equation. Therefore the error propagation resulting
from the Gaussian approximation to the exciting source of the
differential equation can be ignored.

V. ANALYTICAL AND SIMULATION RESULTS

In this section, the performances of the GMM, Gaussian
approximation to the exciting source of the differential equa-
tion, and approximate PDF of path losses L are investigated
for sectorized cellular networks [1] [26] where UEs are uni-
formly distributed. Numerical computation and Monte Carlo
simulation are performed to verify the derivation and show
the impacts of the order of the GMM, attenuation exponent
and standard deviation of the shadowing. The main simulation
parameters are presented in Table III.

TABLE III
SIMULATION PARAMETERS.

System parameter Parameter value
Cell radius 100m

Reference distance 1m
Path loss at the reference distance 37dB

Maximum antenna gain plus cable loss 14dBi
Number of sectors in a cell 3
3dB beam-width in degrees 70◦

Maximum antenna attenuation 20dB
Attenuation exponent 2∼4

Standard deviation of the SF 3∼12dB

A. PDF of Propagation Attenuation plus Shadowing

In this sub-section, the PDF of the addition of the prop-
agation attenuation and shadowing Y and performance of
the GMM are investigated in terms of ASR. To investigate
the impact of ASR on the shape of the PDF, we define the
normalized random variable Ȳ =

Y −c1Y√
c2Y

where c1Y and c2Y are

the first two cumulants of Y . As can be seen from Fig. 3, if
the different values of the attenuation exponent and standard
deviation of the shadowing have the same ASR, the shapes
of distributions are identical. From Fig. 4, we can see that
the skewness of Ȳ will tend to zero with the decrease of the
ASR. Only when the ASR is small, the PDF of Ȳ can be well
approximated as the standard Gaussian distribution. In other
words, it is not feasible to assume that the addition of the
propagation attenuation and shadowing is normally distributed
when ASR is large.

B. Differential Equation with Approximated Exciting Source

To make the convolution of the Gaussian function
N
(
l; ũi, σ̃

2
i

)
and antenna loss fZ (z) tractable, the exciting
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Fig. 3. PDFs of Ȳ in terms of the metric ASR.
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Fig. 4. Standard normal distribution and PDFs of Ȳ .

source of the differential equation (31) which is transformed
from the convolution operation is approximated as the Gaus-
sian function Q̂i (l). In this sub-section, the performance of
the Gaussian approximation Q̂i (l) is investigated. We use
the 3 dB beam-width of the antenna pattern θk = 7

6
π
k

as specified in [1] [27]. To utilize the KL divergence to
evaluate the performance of the Gaussian approximation, the
function Q̂i (l) and Qi (l) are normalized to be PDFs. The KL
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Fig. 5. KL divergence of the normalized Q̂i (l) from the normalized Qi (l)
versus the standard deviation of the shadowing when the order of the GMM
is eight.

divergence of the normalized Q̂i (l) from the normalized Qi (l)
is shown in Fig. 5 when the order of the Gaussian mixture



0090-6778 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2017.2657761, IEEE
Transactions on Communications

8

model is eight. It will quickly approach zero with the increase
of the standard deviation of the shadowing. Therefore the
exciting source Qi (l) can be well approximated as a weighted
Gaussian function as given in (39).

C. PDF of Path Loss

In this sub-section, the approximate PDF of the addition
of the propagation attenuation, shadowing and antenna loss L
represented by Gaussian functions and Dawson functions is
investigated in terms of the attenuation exponent and standard
deviation of the shadowing. The PDF of L is obtained by the
numerical computation.
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Fig. 6. KL divergence of f̂L (l) and Gaussian fitting from fL (l) versus the
standard deviation of the shadowing when the attenuation exponent is three.
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Fig. 7. KL divergence of f̂L (l) and Gaussian fitting from fL (l) versus the
attenuation exponent when the standard deviation of the shadowing is 6 dB.

The KL divergence of the approximate PDF f̂L (l) from
fL (l) is shown in Fig. 6 and Fig. 7 in terms of the stan-
dard deviation of the shadowing and attenuation exponent,
respectively. The KL divergence of the Gaussian fitting with
the same mean and variance as fL (l) from fL (l) is also
compared. Results show that the PDF of path losses will
approach a Gaussian function when the standard deviation of
the shadowing increases or the attenuation exponent decreases.
If we assume that the PDF of path losses can be considered
Gaussian when the KL divergence is smaller than 0.01, the
PDF of path losses cannot be approximated as a Gaussian
function when the standard deviation of the shadowing is less
than 9.2 dB. When the order of Gaussian mixture model is

not less than four, the PDF of path losses can be tightly
approximated in the form of Dawson functions and Gaussian
functions.

20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04

0.05

0.06

Path loss (dB)

P
D

F

100 100.5 101

0.0434

0.0436

0.0438

skewness=−1.0088, β=4

skewness=−0.6865, β=3

skewness=−0.8577, β=3.5
skewness=−0.5007, β=2.5

skewness=−0.3135, β=2

Fig. 8. PDFs of fL (l) and f̂L (l) when the standard deviation of the
shadowing is 6 dB. The solid lines are the exact PDFs through numerical
computation. The dashed lines are the Monte Carlo simulation results. The
dotted lines are the approximations of the PDFs when the order of the
Gaussian mixture model is two. The dash-dotted lies are the approximations
of the PDFs when the order of the Gaussian mixture model is four.

The PDF curves in Fig. 8 show that the PDF of path losses
deviates from the Gaussian function with the increase of the
attenuation exponent. The increase of the attenuation exponent
will destroy the symmetry of the PDF of path losses and the
tail on the left side of the PDF of path losses will become
longer than the right side. When the order of the Gaussian
mixture model is not less than four, the derived closed-form
PDF of path losses always achieves satisfactory performance.

Fig. 9 shows that the outage probability based on the
Gaussian fitting is not accurate when the cell radius is small or
the outage threshold is large. And the cell radius will decrease
with the increase of the standard deviation if the target outage
probability is given. Outage probabilities based on f̂L (l) are
obtained by the numerical computation. The performance gap
between outage probabilities based on f̂L (l) and Monte Carlo
simulation can be ignored. If the desired outage probability for
the network planning is less than 2%, the cell size computed
through the Gaussian fitting will be significantly smaller than
that computed through f̂L (l) and Monte Carlo simulation.
Therefore, the cell size computed through the Gaussian fitting
will result in more BSs than needed.

VI. CONCLUSIONS

In this paper, the PDF of path losses including the propa-
gation attenuation, shadowing and antenna pattern is studied,
and a closed-form approximation of the PDF of path losses
is derived. The cumulant analysis shows that the defined
metric ASR determines the shape of the PDF of the addition
of the propagation attenuation and shadowing. Only when
the ASR is small, the assumption that the addition of the
propagation attenuation and shadowing is normally distributed
is feasible. Otherwise, it greatly deviates from the normal
distribution. Numerical and Monte Carlo simulation results
show that the closed-form approximation can always achieve
the satisfactory performance. Moreover, the outage probability
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Fig. 9. Outage probabilities based on f̂L (l) and Monte Carlo simulation
when the attenuation exponent is four. The dotted, dashed and solid lines
denote the outage probability based on the Monte Carlo simulation, Gaussian
approximation and f̂L (l) respectively.

computed through the derived closed-form approximation is
more accurate than that computed through the Gaussian ap-
proximation. With a given outage threshold, the cell size can
be better designed through the closed-form PDF of path losses
than through the Gaussian fitting.

APPENDIX A
INDEPENDENCE OF D AND Θ

Without loss of generality, the proof is given for the three-
sector cell site. With the assumption that UEs are uniformly
distributed in the three-sector cell site, the probability that UEs
locate in the colored area of Fig. 10 is

FΘ,D (θ, d) = P (Θ ≤ θ,D ≤ d)

=

∫ θ

0

∫ d

0

fΘ,D (x, y) dxdy =
θd2

2π
3 R

2
.

(53)

The joint PDF of the random variable Θ and D is

fΘ,D (θ, d) =
∂2FΘ,D (θ, d)

∂θ∂d
=

1
2π
3

2d

R2
. (54)

 

d
R

2

3

 

Fig. 10. Illustration of the UE distribution.

The marginal PDFs of the random variable Θ and D can be
derived from the joint PDF in (54) as

fΘ (θ) =
1
2π
3

, fD (d) =
2d

R2
. (55)

Therefore

fΘ,D (θ, d) = fΘ (θ) fD (d) . (56)

APPENDIX B
GENERAL SOLUTION OF DIFFERENTIAL EQUATION (31)

Assume that

fL,i (l) = ui (l) vi (l) . (57)

Substituting (57) into (31), we have

u′i (l) vi (l) + ui (l) (v′i (l) + Pi (l) vi (l)) = Qi (l) . (58)

Assume that

v′i (l) + Pi (l) vi (l) = 0. (59)

Then the function vi (l) can be expressed as

vi (l) = vi (l0) exp

(
−
∫ l

l0

Pi (s) ds

)
. (60)

Substituting (60) into (58), we obtain

ui (l) =
1

vi (l0)

∫ l

l0

Qi(t) exp

(∫ t

l0

Pi (s) ds

)
+ ui (l0) .

(61)

Combining (61) and (60), we have

fL,i (l) = exp

(
−
∫ l

l0

Pi (s) ds

)

×

[∫ l

l0

Qi (t) exp

(∫ t

l0

Pi (s) ds

)
dt+ fL,i (l0)

]
.

(62)
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