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Abstract—Accurate 3D multi-object tracking (MOT) is cru-
cial for autonomous driving, as it enables robust perception,
navigation, and planning in complex environments. While deep
learning-based solutions have demonstrated impressive 3D MOT
performance, model-based approaches remain appealing for
their simplicity, interpretability, and data efficiency. Conventional
model-based trackers typically rely on random vector-based
Bayesian filters within the tracking-by-detection (TBD) frame-
work but face limitations due to heuristic data association
and track management schemes. In contrast, random finite set
(RFS)-based Bayesian filtering handles object birth, survival, and
death in a theoretically sound manner, facilitating interpretability
and parameter tuning. In this paper, we present OptiPMB, a
novel RFS-based 3D MOT method that employs an optimized
Poisson multi-Bernoulli (PMB) filter while incorporating several
key innovative designs within the TBD framework. Specifically,
we propose a measurement-driven hybrid adaptive birth model
for improved track initialization, employ adaptive detection
probability parameters to effectively maintain tracks for occluded
objects, and optimize density pruning and track extraction mod-
ules to further enhance overall tracking performance. Extensive
evaluations on nuScenes and KITTI datasets show that OptiPMB
achieves superior tracking accuracy compared with state-of-
the-art methods, thereby establishing a new benchmark for
model-based 3D MOT and offering valuable insights for future
research on RFS-based trackers in autonomous driving.
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I. INTRODUCTION

ACCURATE and reliable 3D multi-object tracking is
essential for autonomous driving systems to enable

robust perception, navigation, and planning in complex
dynamic environments. Although deep learning has recently
driven the development of many learning-based tracking meth-
ods [1], [2], [3], [4], [5], [6], [7], model-based approaches
continue to attract significant attention due to their simplicity
and data sample efficiency. In model-based tracking, a com-
mon design paradigm is to employ random vector (RV)-based
Bayesian filtering within the tracking-by-detection (TBD)
framework [8], [9], [10], [11], [12], [13], [14], [15], [16].
Specifically, pre-trained detectors provide object bounding
boxes, which serve as inputs for computing similarity scores
between detections and existing objects to form an affinity
matrix. Assignment algorithms, such as greedy matching and
the Hungarian algorithm [17], then establish detection-to-
object associations. Bayesian filters (e.g., the Kalman filter)
finally update the object state vectors according to the asso-
ciation result. However, because RV-based Bayesian filters
estimate each object’s state vector individually, these methods
often depend on complex heuristic data association steps
and track management schemes to effectively track multiple
objects. For example, while methods in [9], [11], [12], [13],
[14], [15], and [16] achieve state-of-the-art performance on
large-scale autonomous driving datasets like nuScenes [18]
and KITTI [19], they employ multi-stage data association and
counter/score-based track management to address the inherent
limitation of RV-based Bayesian filters.

An important alternative design paradigm within the TBD
framework is to utilize random finite set (RFS)-based Bayesian
filtering [20], [21], [22], [23], [24]. Unlike conventional RV-
based filters, RFS filters model the MOT problem within
a unified Bayesian framework that naturally handles birth,
survival, and death of multiple objects. This comprehen-
sive modeling not only improves the interpretability of the
algorithm but also facilitates effective parameter tuning. The
Poisson multi-Bernoulli mixture (PMBM) filter was first
employed for 3D MOT in autonomous driving scenarios
[20], [21] due to its elegant handling of detected and
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undetected objects. Subsequent work [22] proposed a Pois-
son multi-Bernoulli (PMB) filter utilizing the global nearest
neighbor (GNN) data association strategy as an effective
approximation of the PMBM filter, which improves compu-
tational efficiency and simplifies parameter tuning. However,
existing PMBM/PMB-based trackers [20], [21], [22] with
standard modeling assumptions may still experience perfor-
mance degradation in complex environments. This motivates
the need for innovative algorithm designs tailored for prac-
tical autonomous driving scenarios that pushes the limits of
RFS-based 3D MOT methods.

To this end, a novel OptiPMB tracker is proposed in this
paper. The main contributions are summarized as follows:
• We provide a systematic analysis of the RFS-based 3D

MOT framework and introduce the OptiPMB tracker,
which achieves superior performance in tracking accu-
racy and track ID maintenance compared with previous
RFS-based trackers in autonomous driving scenarios.

• Within the OptiPMB tracker, we propose a novel hybrid
adaptive birth model for effective track initialization in
complex environments. Additionally, we employ adaptive
detection probability parameters to enhance track main-
tenance for occluded objects, and optimize the density
pruning and track extraction modules to further boost
tracking performance.

• The OptiPMB tracker is comprehensively evaluated and
compared with other advanced 3D MOT methods on
the nuScenes [18] and KITTI [19] datasets. Our method
achieves state-of-the-art performance on the nuScenes
tracking challenge leaderboard with 0.767 AMOTA score,
which establishes a new benchmark for model-based
online 3D MOT and motivates future research on RFS-
based trackers in autonomous driving.

The rest of the paper is organized as follows. Related works
are reviewed in Section II. The basic concepts of RFS-based
3D MOT are introduced in Section III. Details of our proposed
OptiPMB tracker are illustrated in Section IV. We evaluate and
analyze the performance of OptiPMB on nuScenes and KITTI
datasets in Section V. Finally, Section VI concludes the paper.

II. RELATED WORKS

A. Model-Based 3D Multi-Object Tracking Methods

1) TBD With RV-Based Bayesian Filter: AB3DMOT [8]
establishes an early open-source baseline for 3D MOT on
autonomous driving datasets by adopting the TBD framework,
which performs tracking with object bounding boxes estimated
by pre-trained object detectors. It employs the Hungarian algo-
rithm [17] for detection-to-object association and the Kalman
filter (KF) to estimate object state vectors, thereby forming
a simple model-based paradigm that integrates TBD with
RV-based Bayesian filters. Building upon this paradigm, sub-
sequent works have enhanced tracking performance by intro-
ducing multi-stage data association [10], [11], [13], [14], [15],
[16], exploiting diverse features to measure affinities between
detections and objects [25], [26], and incorporating multiple
sensing modalities [9], [12], [16], [27], [28], [29], [30].
For example, MCTrack [15] performs two-stage matching on

both the bird-eye’s-view (BEV) plane and the range view
plane, thereby reducing false positives and ID switch errors
when using low-quality detections. EMMS-MOT [16] lever-
ages spatial synergies between 3D and 2D detection boxes
by jointly estimating 3D and 2D motion states with KF and
adopting a three-stage data association strategy. Moreover,
alternative association methods, including joint probabilistic
data association [31], [32] and multiple hypothesis tracking
[33], have also been explored within this paradigm.

2) TBD With RFS-Based Bayesian Filter: Unlike conven-
tional RV-based Bayesian filters, RFS-based filters model the
collection of object states as a set-valued random variable,
providing a mathematically rigorous framework to handle
uncertainties in object existence, births, and deaths. An early
attempt to utilize an RFS-based Bayesian filter within the TBD
framework for 3D MOT is proposed in [20], where the PMBM
filter is used to estimate object trajectories from monocular
camera detections. RFS-M3 [21] further extends the PMBM
filter to LiDAR-based 3D MOT by using 3D bounding boxes
as inputs. To improve efficiency and simplify parameter tuning,
[22] combines the PMB filter with GNN data association,
proposing a simple yet effective GNN-PMB tracker. Other
RFS-based Bayesian filters, such as the probability hypothesis
density and labeled multi-Bernoulli filters, are also explored
for 3D MOT applications [23], [24].

3) JDT With MEOT: While the TBD framework relies on
object detectors to provide inputs for trackers, multi-extended
object tracking (MEOT) methods under the joint-detection-
and-tracking (JDT) framework can simultaneously estimate the
motion, shape, and size of objects directly from raw point
cloud measurements, reducing the reliance on accurate 3D
bounding box detections. Different statistical modeling of geo-
metrically extended objects are utilized by RFS-based filters to
achieve 3D MEOT in [34], [35], and [36]. Additionally, camera
images are used to improve point cloud clustering quality and
data association accuracy for 3D MEOT in [37] and [38].

B. Learning-Based 3D Multi-Object Tracking Methods

1) TBD With Learning-Assisted Data Association: The
classical strategy to enhance model-based 3D MOT with
neural networks is employing learning-assisted data associa-
tion. In this approach, feature embeddings captured by neural
networks serve as an additional cue to construct the affinity
matrix, which is subsequently processed by conventional data
association methods, such as greedy matching [1], [3], [39],
[40], [41] and multi-stage Hungarian algorithm [2], [42],
[43]. Object states are then estimated by the Kalman filter
based on association results. For example, DINO-MOT [43]
leverages the DINOv2 encoder to extract visual features of
pedestrians and refines the association results by computing
cosine similarities between embeddings. Similar strategies are
also applied to RFS-based filters [44], [45], where learned
embeddings complement the belief propagation messages to
enhance the probabilistic data association.

2) Learning-Based JDT: Recent advances in learning-based
JDT methods leverage neural networks to simultaneously
detect objects and establish associations across frames. For
instance, GNN3DMOT [46] employs a graph neural network
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that fuses 2D and 3D features to capture complex spatial
relationships, while Minkowski Tracker [5] utilizes sparse
spatial-temporal convolutions to efficiently perform JDT on
point clouds. Other approaches combine cross-modal cues
from cameras and LiDAR [47], [48] or incorporate probabilis-
tic and geometric information [49], [50]. Transformer-based
methods [4], [51], [52] further enhance performance by cap-
turing long-range dependencies through attention mechanisms.
These learning-based JDT approaches often offer improved
accuracy and robustness in complex autonomous driving
scenarios, but non-learnable assignment algorithms are still
required to obtain the hard association results.

C. End-to-End Learnable 3D Multi-Object Tracking Methods

1) Learnable Data Association Module: Although neural
networks have been utilized in learning-based 3D MOT,
the non-differentiable assignment modules could hinder fully
data-driven training of the tracker and subsequent networks.
An intuitive solution is using learnable modules for data
association. For instance, RaTrack [53] replaces the Hun-
garian algorithm with a differentiable alternative, proposing
an end-to-end trainable tracker for 4D radars. SimTrack
[54] eliminates the heuristic matching step by utilizing a
hybrid-time centerness map to handle object birth, death, and
association.

2) Tracking-by-Attention: The tracking-by-attention strat-
egy was initially proposed for 2D MOT [55], [56] and has
been extended to the 3D domain in recent studies [6], [7], [57].
The core idea is to represent objects with dedicated variable
queries learned from data. In each frame, new birth queries
with unique IDs are generated and subsequently propagated as
existing object queries, thus enabling the network to implicitly
handle data association with label assignment rules during
training. This approach facilitates end-to-end optimization and
makes such transformer-based trackers a key component in
recent autonomous driving pipelines [58], [59].

III. RFS-BASED 3D MOT REVISITED

A. Basic Concept and Notation

In this section, we introduce the fundamental concepts and
notations of RFS-based 3D MOT. For a 3D object, the state
vector x ∈ Rnx usually consists of motion states (e.g., position,
velocity, acceleration, turn rate) and extent states (e.g., shape,
size, and orientation of the object bounding box). Under the
RFS framework illustrated in Fig. 1, the multi-object state is
defined by a finite set X ∈ F(Rnx ), where F(Rnx ) is the space
of all finite subsets of the object state space Rnx . Assuming
that Nk objects exist at time step k, then the multi-object state
can be represented as Xk = {x1

k , x
2
k , . . . , x

Nk
k }, whose cardinality

(the number of elements) is |Xk | = Nk.
In autonomous driving applications, raw observations of the

objects (e.g., camera images, LiDAR and radar point clouds)
are often preprocessed by detectors to obtain bounding boxes,
enabling the trackers to perform MOT using these detections
under the TBD framework. Since TBD-based 3D MOT meth-
ods were proven to be simple and effective in many previous
studies, we employ the TBD framework in this paper and

Fig. 1. Illustration of the RFS-based 3D MOT system model. The top section
displays bounding boxes in different colors, representing tracks with distinct
IDs estimated by the RFS-based tracker.

assume that the measurement of an object is a bounding box
detection. At time step k, assume that the objects are observed
by a set of measurements Zk = {z1

k , z
2
k , . . . , z

Mk
k } ∈ F(Rnz ).

Each measurement zk ∈ R
nz is a bounding box detected from

raw observations which contains measured object states such
as position, velocity, size, and orientation. The collection of
measurement sets from time step 1 to k is denoted by Z1:k.In
practical scenarios, some objects can be misdetected, and
the set of measurements Z often consists of not only true
object detections but also false detections (clutter), as shown
in Fig. 1. The ambiguous relation between the objects and the
measurements increases the complexity of 3D MOT, while the
RFS-based Bayesian filtering aims to provide an effective and
rigorous solution to the multi-object state estimation problem.

B. Key Random Processes

There are three important RFSs widely used in MOT system
modeling, which are the Poisson point process (PPP) RFS,
the Bernoulli RFS, and the multi-Bernoulli RFS. A PPP
RFS X has Poisson-distributed cardinality and independent,
identically distributed elements, which can be defined by the
probability density function

f ppp(X) = e−µ
Y
x∈X

µp(x) = e−
R
λ(x)dx

Y
x∈X

λ(x). (1)

Here, µ is the Poisson rate of cardinality, p(x) is the spatial
distribution of each element, and the intensity function λ(x) =

µp(x) completely parametrizes X. Due to its simplicity, the
PPP RFS is often used to model undetected objects, newborn
objects, and false detections in RFS-based trackers.

A Bernoulli RFS X contains a single element with prob-
ability r or is empty with probability 1 − r. The probability
density function of X is given by

f ber(X) =

8̂<̂
:

1 − r X = ∅

rp(x) X = {x}
0 |X| ≥ 2.

(2)

The Bernoulli RFS can be used to model the state distribution
and the measurement likelihood function of an object.
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A multi-Bernoulli RFS X is a union of N independent
Bernoulli RFSs Xi, i.e., X =

SN
i=1 Xi, whose probability

density function is defined by

f mb(X) =

8<:
X

]i∈IXi=X

Y
i∈I

f ber(Xi) |X| ≤ N

0 |X| > N
(3)

where I = {1, . . . ,N} is an index set for the Bernoulli RFSs,
and ]i∈IXi = X denotes that X is the union of mutually
disjoint subsets {Xi}. The multi-Bernoulli RFS can be applied
for modeling states of multiple objects.

C. Bayesian Filtering With Conjugate Prior Densities

The goal of the RFS-based Bayesian filter is to recursively
estimate the multi-object posterior f (Xk |Z1:k), from which the
state of each object can be extracted. A Bayesian filtering
recursion includes a prediction step followed by an update
step. In the prediction step, the posterior density in the last
time step is predicted to the current time step by the Chapman-
Kolmogorov equation [60]

f (Xk |Z1:k−1) =

Z
g(Xk |Xk−1) f (Xk−1|Z1:k−1)δXk−1 (4)

where g(Xk |Xk−1) is the multi-object state transition density.
Under conventional MOT assumptions of the RFS framework
[22], [60], [61], [62], an object with state xk−1 survives from
time step k − 1 to k with probability ps(xk−1), and its state
transits with g(xk |xk−1). The newborn objects are modeled by
a PPP RFS with intensity λb(·).

In the update step, the predicted density f (Xk |Z1:k−1) is
updated using the information of measurements Zk. Given
the multi-object measurement likelihood h(Zk |Xk), the multi-
object posterior can be calculated by Bayes’ rule [60]

f (Xk |Z1:k) =
h(Zk |Xk) f (Xk |Z1:k−1)R
h(Zk |Xk) f (Xk |Z1:k−1)δX

. (5)

Here, the physical process of objects generating measurements
is modeled in the likelihood function h(Zk |Xk). Based on the
conventional assumptions, each object is detected with prob-
ability pd(xk), and a detected object generates a measurement
according to the single-object measurement likelihood h(zk |xk).
The false detections (clutter) are assumed to follow a PPP RFS
with intensity λc(·).

Conjugate prior densities are essential for efficient Bayesian
filtering, as such densities can preserve the same mathematical
form throughout filtering recursions. PMBM [60] and δ-
generalized labeled multi-Bernoulli (δ-GLMB) [62] are two
multi-object conjugate prior densities widely used in RFS-
based Bayesian filters. In this research, we adopt a simplified
form of the PMBM density, known as the PMB density, for
use in our proposed OptiPMB tracker.

IV. OPTIPMB TRACKER: IMPROVING THE PERFORMANCE
OF RFS-BASED 3D MOT

In this section, we provide a detailed illustration of our
OptiPMB tracker and explain how its innovative designs and
modules enhance the performance of RFS-based 3D MOT.

The overall pipeline of the OptiPMB tracker is depicted in
Fig. 2, with a comprehensive description of each component
presented below.

A. Single-Object State Transition and Measurement Model

Before delving into the 3D MOT pipeline, it is necessary
to define the object state transition and measurement models.
As an RFS-based tracker, OptiPMB represents the multi-object
state as a set of single-object state vectors, X = {xi}i∈I, where
each x ∈ X is defined as:

x = [xT
M, x

T
A, x

T
U, xcnt, xlen, xs]T (6)

where xM = [x, y, v, φ, ω, a]T, xA = [α, β, γ, ζ]T, and xU =

[c, t]T. The motion state xM comprises the object’s position
on the BEV plane (x, y), velocity v, heading angle φ, turn
rate ω, and acceleration a. The auxiliary state xA includes the
length α, width β, and height γ of the object bounding box
as well as ζ, the object’s position along the z-axis. The time-
invariant state xU contains the object class c and track ID t.
Finally, xcnt records the number of consequent misdetections
for this object, xlen records the number of time steps the
object has survived, xs is a confidence score utilized in certain
evaluation metrics. It is worth noting that only the motion
state xM is estimated by Bayesian filtering recursions, while
the non-motion states (xA, xU, xcnt, xlen, xs) are processed by a
light-weight filter (see Section IV-F for details).

Accurate modeling of object motion is crucial for achieving
high tracking performance. In OptiPMB, the constant turn rate
and acceleration (CTRA) model [63] is employed to predict
the object’s motion state, formulated by

xM,k = ΓCTRA(xM,k−1) + vk (7)

where ΓCTRA(·) denotes the nonlinear dynamic function of
the CTRA model (see [63, Section III-A]), vk ∼ N (0,Qk) is
Gaussian-distributed process noise. Unscented transform (UT)
[64] is applied to handle the nonlinear functions, and we have
the motion state transition density

g(xM,k |xM,k−1) = N (xM,k; mk|k−1, Pk|k−1)
Pk|k−1 = P̄k|k−1 + Qk

(mk|k−1, P̄k|k−1) = UT[ΓCTRA(·),mk−1, Pk−1]. (8)

Here, mk−1 and Pk−1 denote the posterior mean and covariance
of the motion state, i.e., xM,k−1 ∼ N (mk−1, Pk−1). The trans-
formation UT[Γ(·),m, P] computes the mean and covariance
projected through the nonlinear function Γ(·). The non-motion
states remain unchanged in the transition model. The survival
probability is simplified as a predefined constant dependent
only on the object’s class, i.e., ps(c).

In the TBD framework, removing false detections generated
by the object detector helps reduce false tracks and improves
computational efficiency [10], [22]. To achieve this, OptiPMB
employs a per-class score filter and non-maximum suppression
(NMS) for detection preprocessing [22]. Specifically, bounding
boxes with detection scores below ηsfare removed, and NMS
is applied for overlapping boxes with intersection over union
(IoU) [65] exceeding ηiou. After preprocessing, the remaining
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Fig. 2. Overall pipeline of the proposed OptiPMB tracker. Compared to the previous state-of-the-art PMB filter-based 3D MOT method [22], the innovative
differences and improvements of OptiPMB are highlighted in distinct colors. Yellow denotes adaptive designs to improve the robustness of the tracker (see
Section IV-G for details). Green denotes algorithm modules optimized for better tracking performance (see Section IV-H for details).

detections form the measurement set Z = {zm}m∈M, where each
measurement z ∈ Z is defined by

z = [zT
M, z

T
A, zc, zs]T (9)

where zM = [zx, zy, zvx, zvy, zφ]T and zA = [zα, zβ, zγ, zζ]T. Here,
zM is the observation of the object’s motion state, while zA
denotes the observation of the object’s auxiliary state. The
motion measurement model is given by

zM,k = H(xM,k) + wk

= [xk, yk, vk cos φk, vk sin φk, φk]T + wk (10)

where wk ∼ N (0,Rk) is Gaussian measurement noise. Since
the object’s non-motion states are not estimated by Bayesian
filtering, we simply assume zA,k = xA,k and zc,k = ck.
The detection score of the measurement zk is denoted by
zs,k ∈ (0, 1], which is provided by the 3D object detector.

B. Basic Framework: Bayesian Filtering With PMB Density

The OptiPMB tracker is built upon the basic framework of
a PMB filter, which represents the multi-object state with a
PMB RFS and propagates its probability density through the
Bayesian filtering recursions outlined in Section III-C. Unlike
the PMBM filter [60], which maintains multiple probable
global data association hypotheses,1 the PMB filter selects
and propagates only the best global hypothesis. Consequently,
when properly designed and parameterized, the PMB filter can
achieve higher computational efficiency without compromising
3D MOT performance [22].

The OptiPMB tracker defines the multi-object posterior
density as follows

f (Xk |Z1:k) =
X

Xu
k]Xd

k=Xk

f ppp(Xu
k |Z1:k) f mb(Xd

k |Z1:k) (11)

1The discussion on global and local hypotheses could be found in the
following content of this sub-section.

where the multi-object state is modeled as a union of two
disjoint subsets, i.e., Xu

k ]Xd
k = Xk. The PPP RFS Xu

k denotes
the state of potential objects which have never been detected,
while the MB RFS Xd

k denotes the state of potential objects
which have been detected at least once. This partition of
detected and undetected objects enables an efficient hypotheses
management of potential objects [60], [61].

According to the definitions in Section III-B, the posterior
PMB density at time step k − 1, f (Xk−1|Z1:k−1), can be fully
determined by a set of parameters

λu
k−1, {(r

i
k−1, pi

k−1)}i∈Ik−1 . (12)

Here, λu
k−1(·) is the intensity of the PPP RFS Xu

k−1. Based
on our system modeling in Section IV-A, the PPP intensity
λu

k−1(·) is a weighted mixture of Gaussian-distributed Poisson
components, defined as

λu
k−1(x) =

PNu
k−1

n=1 µ
u,nN (x; mu,n

k−1, P
u,n
k−1) (13)

where µu,n, mu,n
k−1, and Pu,n

k−1 represent the weight, motion
state mean, and motion state covariance of the n-th Poisson
component, respectively. The MB RFS Xd

k−1 consists of a
set of Bernoulli components, represented by {(ri

k−1, pi
k−1)}i∈Ik−1

in (12). The i-th Bernoulli component, Xi
k−1, is characterized

by existence probability ri
k−1 and Gaussian spatial distribution

pi
k−1 ∼ N (mi

k−1, P
i
k−1). To improve the clarity of hypotheses

management, OptiPMB employs the track-oriented hypothesis
structure [22], [60], defining the MB index set as

Ik−1 =
SNd

k−1
n=1 Ln

k−1 (14)

where Nd
k−1 denotes the number of previously detected poten-

tial objects, and Ln
k−1 is the index set for the local data

association hypotheses of the n-th potential object.
A local hypothesis represents the scenario where an object

either generates a measurement or is misdetected at the current
time step. As illustrated in Fig. 3, consider a case with
two previously detected potential objects, {x1, x2}, and three
measurements, {z1, z2, z3}. According to the assumptions and
system modeling in Section III and IV-A, three types of local
hypotheses can then be identified:
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Fig. 3. Cost matrix and local data association hypotheses. The misdetection,
detection, and first-time detection hypotheses are highlighted in orange, green,
and blue, respectively. Cost matrix entries with infinity values represent
impossible association hypotheses.

• Misdetection Hypotheses: {l0,1, l0,2}, corresponding to
objects {x1, x2} being misdetected (i.e., associated with
a dummy measurement z0).

• Detection Hypotheses: {lm,n|n = 1, 2; m = 1, 2, 3}, corre-
sponding to cases where a previously detected potential
object is detected at the current time step and generates
one of the measurements.

• First-Time Detection Hypotheses:{l1,3, l2,4, l3,5}, indicat-
ing that the measurements originate from newly detected
objects or clutter, corresponding to new potential objects
{x3, x4, x5}.

These three types of local hypotheses cover all possi-
ble data associations between objects and measurements.
A global hypothesis consists of a set of local hypotheses
that are compatible with the system modeling, defining a
valid association between all objects and measurements. For
example, {l0,1, l2,2, l1,3, l3,5} is a valid global hypothesis, while
{l1,1, l1,2, l3,2} is invalid, because it violates the constraint
that a measurement must associate with one and only one
potential object. Since OptiPMB only maintains the best global
data association hypothesis over time, each detected potential
object retains a single local hypothesis that is included in the
global hypothesis, while all other local hypotheses are pruned
after the PMB update. Therefore, the local hypothesis index set
of the n-th detected potential object is defined as Ln

k−1 = {n}.
Details on local hypothesis management are in Section IV-D.

As illustrated in Fig. 2, at the subsequent time step k,
the PMB density f (Xk−1|Z1:k−1) is first propagated through
the prediction step and then updated using the preprocessed
object detections. The situation that previously undetected
potential objects remain undetected at the current time step
is also considered within this pipeline (see Section IV-D3)
alongside the three types of local hypotheses. Following the
PMB prediction and update, the data association module
determines the optimal global data association hypothesis,
which is then utilized as protocol for the pruning module
to eliminate redundant PPP and Bernoulli components from
the PMB density. Next, the non-motion states (including track
IDs) of detected potential objects are determined by a light-

Algorithm 1 Pseudo Code of OptiPMB
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weight filter. Finally, the estimated posterior f (Xk |Z1:k) is
processed by the track extraction module to generate the object
tracks. The details of our OptiPMB tracker are explained in
the following subsections, where the time subscript k|k − 1 is
abbreviated as + for simplicity. Pseudo code for the complete
OptiPMB recursion is provided in Algorithm 1.

C. PMB Density Prediction

In the PMB prediction step, the posterior PPP intensity
is predicted as a Gaussian mixture according to the state
transition model in Section IV-A. Specifically, we have

λu
+(x) =

PNu
k−1

n=1 µ
u,n
+ N (x; mu,n

+ , Pu,n
+ )

µu,n
+ = µu,n

k−1 ps(cu,n) (15)

where the predicted mean mu,n
+ and covariance Pu,n

+ of the
n-th Poisson component is obtained from (8). Note that
OptiPMB does not introduce the birth intensity λb(·) during
the prediction step, as is done in conventional PMBM/PMB
implementations [20], [21], [22], [60]. Instead, object birth is
managed in the update step using the newly proposed adaptive
birth model (see Section IV-G2 for details).

The predicted MB density is parameterized by the existence
probability and spatial distribution of Bernoulli components,
i.e., {(ri

+, pi
+)}i∈I+ , where(

ri
+ = ri

k−1 ps(ci)
pi
+(x) = N (x; mi

+, P
i
+).

(16)

The predicted mean mi
+ and covariance Pi

+ of the i-th
Bernoulli component are also calculated by (8). The MB index
set and local hypotheses index sets remain unchanged during
the PMB prediction, i.e., I+ = Ik−1, {Ln

+} = {Ln
k−1}.

D. PMB Density Update

In the PMB update step, OptiPMB enumerates local data
association hypotheses (defined in Section IV-B) and update
the predicted PMB density using Bayes’ rule. Update pro-
cedures for each type of local hypothesis are described as
follows.

1) MB Update for Misdetection and Detection Hypotheses:
After PMB prediction, misdetection and detection hypotheses
are generated for previously detected potential objects, which
are characterized by the predicted MB density {(ri

+, pi
+)}i∈I+ .

As discussed in Section IV-B, the n-th previously detected
potential object retains only one local hypothesis indexed
by n. The corresponding Bernoulli component Xn

+ represents
the predicted object state with the existence probability rn

+

and spatial distribution pn
+(·) defined in (16). A misdetection

hypothesis l0,nk is first generated as [60]8<:r =
rn
+(1 − pd(xn

+))
1 − rn

+ + rn
+(1 − pd(xn

+))
p(x) = pn

+(x)
(17)

where (r, p) are the parameters of the corresponding Bernoulli
component. Next, class gating is applied to select measure-
ments belonging to the same class as the object. Distance
gating is then performed to identify measurements that fall

within a predefined distance ηdist from the object. Each mea-
surement zm

k that falls within the gate of the object generates
a detection hypothesis lm,nk , defined as [60]8̂̂̂<̂

ˆ̂:
w = − ln

rn
+pd(xn

+)N (zm
xy,k; ẑn

k , S
n
k)

1 − rn
+ + rn

+(1 − pd(xn
+))

r = 1
p(x) = N (x; mm,n

k , Pm,n
k )

(18)

where w is the association cost, zm
xy,k = [zm

x,k, z
m
y,k]T is the

position measurement, ẑn
k and S n

k denote the mean and
covariance of the predicted position measurement. Real-world
data indicates that measured object velocity and heading
are often inaccurate and noisy, leading to fluctuations in
association costs. To mitigate the impact of outlier measure-
ments, OptiPMB employs a simplified measurement model for
computing association costs, which relies solely on position
information. The measurement model is formulated as

zxy,k = HxyxM,k + wxy,k

Hxy =

�
1 0 0 0 0 0
0 1 0 0 0 0

�
(19)

where wxy,k ∼ N (0,Rxy,k), Rxy,k corresponds to the upper-left
2 × 2 sub-matrix of the full covariance matrix Rk. Conse-
quently, the mean and covariance of the predicted position
measurement in (18) are computed by(

ẑn
k = Hxymn

+

S n
k = HxyPn

+HT
xy + Rxy,k.

(20)

Notably, (19) is used solely for calculating association costs,
whereas the complete measurement model (10) is applied in
the unscented Kalman filter (UKF) [64] to update the object’s
motion state. With measurement zm

k , the motion state mean
mm,n

k and covariance Pm,n
k in (18) are updated as

(mm,n
k , Pm,n

k ) = UKF[H(·),mn
+, P

n
+, z

m
k ,Rk]. (21)

After generating all possible misdetection and detection
local hypotheses for the n-th object, the index set of these
new local hypotheses is defined by

L̂n
k = {(0, n)} ∪ {(m, n)|m ∈Mn

k)}, n = 1, . . . ,Nd
k−1 (22)

where (0, n) indexes the misdetection hypothesis, {(m, n)}
denote the indices for detection hypotheses, Mn

k is the index
set for measurements within the gate of the n-th object.

2) MB Update for First-Time Detection Hypotheses: For
each measurement, a newly detected potential object is created
and a first-time detection hypothesis is generated for this
new object. Since the PPP components represent undetected
potential objects, if at least one Poisson component falls within
the gate of a measurement zm

k , then the first-time detection
hypothesis lm,N

d
k−1+m

k is generated as [60]8̂̂̂<̂
ˆ̂:

w = − ln[e + λc(zm
k )]

r = e/[e + λc(zm
k )]

p(x) =
1
e

X
j∈Jm

k

e j p j(x)
(23)
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where 8̂̂̂<̂
ˆ̂:

e =
X
j∈Jm

k

e j

e j = µ
u, j
+ pd(xu, j

+ )N (zm
xy,k; ẑu, j

k , S u, j
k )

p j(x) = N (x; mm, j
k , Pm, j

k )

(24)

and the set Jm
k denotes the indices of Poisson components

that fall inside the gate of zm
k . The clutter intensity λc(·) is

characterized by a clutter rate parameter µc(·) predefined for
each object class and a uniform spatial distribution puni(·) over
the region of observation, i.e.,

λc(zm
k ) = µc(zm

c,k)puni(zm
xy,k) = µc(zm

c,k)/A (25)

where A denotes the area size of the observation region. The
mean and covariance of the predicted position measurement,
(ẑu, j

k , S u, j
k ), as well as the updated mean and covariance of the

motion state, (mm, j
k , Pm, j

k ), are calculated in a manner similar
to (20) and (21). The updated density p(x) is approximated
as a single Gaussian density via moment matching [60]. The
detection probability pd(x+) is adaptively determined based
on the object’s occlusion status, as further elaborated in
Section IV-G1. If no Poisson component falls inside the
measurement’s gate, the measurement is processed using the
proposed hybrid adaptive birth model (HABM) to determine
the hypothesis parameters (w, r, p). The HABM also adaptively
generates λb

k(·) based on current measurements to model the
undetected newborn objects. Details of the HABM are in
Section IV-G2.

The local hypothesis index set for each new object is

L̂n
k = {(n − Nd

k−1, n)}, n = Nd
k−1 + 1, . . . ,Nd

k−1 + Mk. (26)

After enumerating all possible local hypotheses, the index set
of the updated MB density is represented as

Îk =
SN̂d

k
n=1 L̂n

k (27)

where the number of detected potential objects increases by
the number of measurements, i.e., N̂d

k = Nd
k−1 + Mk.

3) PPP Update: The updated PPP intensity for undetected
potential objects can be simply expressed as [60]

λ̂u
k(x) =

PN̂u
k

n=1 µ
u,n
k N (x; mu,n

k , Pu,n
k )

=
PNu

k−1
n=1 µ

u,n
+ pd(xu,n

+ )N (x; mu,n
+ , Pu,n

+ ) + λb
k(x) (28)

since no measurement update is applied to its components.

E. Data Association and PMB Pruning

In the PMB update procedure, the association costs w for
each detection and first-time detection local hypothesis are
calculated, forming a cost matrix, as shown in Fig. 3. The
optimal global data association hypothesis, which minimizes
the total association cost while assigning each measurement
to a detected potential object, is determined from this cost
matrix using the Hungarian algorithm [22], [60]. To reduce
the computational complexity of data association, OptiPMB
employs gating to eliminate unlikely hypotheses and set the
corresponding association costs to infinity. After the data
association, Bernoulli components that are not included in

the optimal global hypothesis or determined as clutter by the
HABM are removed to reduce unnecessary filtering computa-
tion. If no Bernoulli component belongs to a detected potential
object after pruning, the object is then removed. The redundant
Poisson components are also pruned to reduce false tracks and
ID switch errors. See Section IV-H1 for details of PPP pruning.

F. Light-Weight Filter for Non-Motion States

As discussed in Section IV-A, the non-motion states of an
object are processed using a light-weight filter to enhance
computational efficiency. Specifically, when a newly detected
potential object is created from a measurement zm

k , the time-
invariant state is determined by

xU = [c, t]T = [zm
c,k, (k,m)]T. (29)

Here, the track ID (k,m) uniquely identifies a new object with
the time step k and the measurement index m. Throughout
the OptiPMB tracking recursions, the time-invariant states
remain unchanged. The counter variables for misdetections
and survival time steps are initialized as xcnt,k = 0 and
xlen,k = 1. The object’s confidence score is defined as

xs,k = [1 − exp(−xlen,k)]zm
s,k (30)

where zm
s,k ∈ (0, 1] represents the detection score of zm

k ,
indicating that xs,k is further down-scaled from the detection
score for tracks with shorter survival time.

After the optimal global hypothesis is determined and the
PMB density is pruned, if a remaining detected potential
object is associated with a measurement zm

k under the global
hypothesis, its auxiliary state is updated by

xA,k = (1 − zm
s,k)xA,k−1 + zm

s,kzm
A,k, (31)

the misdetection counter xcnt,k is reset to zero, and the con-
fidence score xs,k is calculated by (30). Otherwise, if the
object is misdetected, the auxiliary state remains unchanged,
the counter increments by one xcnt,k = xcnt,k−1 + 1, and xs,k

is set to zero. The number of survival time steps increases as
xlen,k = xlen,k−1 + 1 regardless of the association status.

After pruning and light-weight filtering, the MB density is
re-indexed as

Ik =
SNd

k
n=1 Ln

k =
SNd

k
n=1{n} (32)

where Nd
k is the number of remaining detected potential

objects. The PPP intensity after pruning is expressed as

λu
k =

PNu
k

n=1 µ
u,n
k N (x; mu,n

k , Pu,n
k ) (33)

where Nu
k denotes the number of remaining Poisson compo-

nents. The posterior PMB density is then fully determined by
the parameters (λu

k , {(r
i
k, pi

k)}i∈Ik ).

G. Adaptive Designs

The performance of model-based 3D MOT methods
depends heavily on the alignment between the pre-designed
model and the actual tracking scenarios. To enhance robustness
of the tracker, OptiPMB proposes multiple adaptive modules
and integrates them in the Bayesian filtering pipeline, enabling
dynamic parameter adjustment and effective initialization of
new object tracks.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Southeast University. Downloaded on November 25,2025 at 02:33:11 UTC from IEEE Xplore.  Restrictions apply. 



DING et al.: OptiPMB: ENHANCING 3D MOT WITH OPTIMIZED POISSON MULTI-BERNOULLI FILTERING 9

1) Adaptive Detection Probability (ADP): In urban traffic
scenarios, objects are frequently occluded by the environment
and other objects, leading to inaccurate detections or even
complete misdetections. To improve the track continuity and
reduce ID switch errors, OptiPMB adaptively adjusts the
detection probability based on the object’s occlusion status,
which is estimated using the LiDAR point cloud and the object
3D bounding box. Specifically, during the PMB update pro-
cedure, the predicted object 3D bounding boxes are projected
onto the LiDAR coordinates, and the number of LiDAR points
within each bounding box is counted. The adaptive detection
probability is then defined as

pd(x+) = pd0(c) ·min
�

1, (1 − sd(c))
PTS(x+)
PTS0(c)

+ sd(c)
�

(34)

where the baseline detection probability pd0(c), minimal scal-
ing factor sd(c) ∈ (0, 1], and expected number of LiDAR
points PTS0(c) are parameters predefined based on the object’s
class c, PTS(x+) counts the actual number of LiDAR points
within the object’s predicted bounding box. According to
this definition, the detection probability decreases as PTS(x+)
becomes smaller, indicating that the object may be occluded.
This adaptive mechanism enable OptiPMB to maintain tracks
for occluded objects and reduce ID switch errors, improving
robustness in complex urban environments.

2) Hybrid Adaptive Birth Model (HABM): The design
of the object birth model not only affects the initiation of
object trajectories but also influences the association between
existing objects and measurements. Consequently, it plays
a critical role in the performance of RFS-based tracking
algorithms. OptiPMB employs a hybrid adaptive birth model
that integrates the conventional PPP birth model with a
measurement-driven adaptive birth method, enabling fast-
response and accurate initialization of new object tracks.

According to the PMB update procedure described in Sec-
tion IV-D2, measurements that cannot be associated with any
Poisson component are processed by the HABM to determine
the local hypothesis parameters. Such “unused” measurement
may correspond to either the first-time detection of a newborn
object or a false detection. To handle false detections, HABM
filters out unused measurements with detection scores zs below
a predefined threshold ηscore and collect them as {zm

k }m∈Mlow
k

,
where Mlow

k represents the index set for low-score measure-
ments. During the PMB update step, a low-score measurement
zm

k is assumed to originate from clutter, and the first-time
detection hypothesis is parameterized as(

w = − ln[λc(zm
k )]

r = 0.
(35)

Note the spatial distribution p(x) is not specified, as this local
hypothesis is directly removed during the pruning step and
does not contribute to any object track.

For the remaining unused measurements with detection
scores greater than or equal to the threshold ηscore, i.e.,
{zm

k }m∈Mhigh
k

, HABM treats them as first-time detections of
newborn objects. Each high-score measurement is associated
with a specialized PPP intensity defined as

λb0(x) = µb0(c)puni(x). (36)

where puni(x) represents a uniform spatial distribution over
the region of observation, µb0(c) is the predefined birth rate
parameter for object class c. This special PPP intensity λb0(x)
represents undetected objects within the observation region
at the previous time step. It is assumed to be time-invariant
and provides no prior information about the object’s motion
state. Therefore, λb0(x) functions as an independent density
in HABM and is excluded from the PMB density recursions.
The first-time detection hypothesis generated for a high-score
measurement zm

k is determined by8̂̂<̂
:̂

w = − ln
�
µb0(zm

c,k)
1 − pa(zm

k )
A

+ λc(zm
k )
�

r = 1
p(x) = N (x; m0,m

k , P0,m
k )

(37)

where A denotes the area size of the observation region,
pa(zm

k ) is the estimated association probability between zm
k and

existing objects, defined as:

pa(zm
k ) = min

h
1,
PNd

k−1
n=1 max({Lm,i

k }i∈Ln
k−1

)
i

Lm,i
k = N (zm

xy,k; ẑi
k, S

i
k). (38)

The calculation method for the likelihood Lm,i
k is provided

in (18) and (20) in Section IV-D1. According to the defi-
nition of (37), if the unused measurement zm

k has a higher
likelihood of being associated with existing objects, the first-
time detection hypothesis will incur a higher association cost.
The Gaussian spatial distribution p(x) in (37) is characterized
by the mean vector m0,m

k and the covariance matrix P0,m
k

predefined for each object class8̂̂<̂
:̂

m0,m
k = [zm

x,k, z
m
y,k,

q
(zm

vx,k)2 + (zm
vy,k)2,

arctan(zm
vy,k, z

m
vx,k), 0, 0]T

P0,m
k = P0(zm

c,k).

(39)

This adaptive design helps reduce false track initializations
while allowing OptiPMB to promptly initialize new tracks
when measurements with high detection scores are observed.

To enhance recall performance and reduce false negative
errors, HABM creates a Poisson component for each low-
score measurement and defines the PPP intensity for newborn
undetected potential objects as

λb
k(x) =

P
m∈Mlow

k
µb,m

k N (x; m0,m
k , P0,m

k )

µb,m
k = µab(zm

c,k)[1 − pa(zm
k )] (40)

where Mlow
k is the index set for low-score measurements, and

µab(zm
c,k) denotes the adaptive birth rate parameter predefined

for each object class. If a low-score measurement originates
from a newborn object rather than clutter, its corresponding
Poisson component in λb

k(x) is likely to be associated with
subsequent measurements and initialize a new track later.
This measurement-driven definition of λb

k(x) allows OptiPMB
to effectively account for measurements with low detection
scores while reducing the risk of missing newborn objects.
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H. Optimizations

To further enhance 3D MOT performance, we optimize the
conventional PMB filter-based tracking pipeline by redesign-
ing two key algorithm modules in OptiPMB.

1) Redundant PPP Pruning (RPP): Although the HABM
proposed in OptiPMB can reduce false negative errors by
introducing the measurement-driven newborn PPP intensity
λb

k(x), the number of Poisson components within λu
k(x)

increases over time. To improve computational efficiency and
reduce false track initialization, removing redundant Pois-
son components during the PPP pruning step is necessary.
While the previous PMBM-based 3D MOT methods [20],
[21] did not specify a dedicated pruning strategy, the original
PMBM filter [60] only prunes the Poisson components with
weights below a predefined threshold. However, this approach
is not well-suited for measurement-driven PPP birth model-
ing. Since the PPP removal solely depends on one pruning
threshold, new Poisson components with low initial weights
may be pruned before they can correctly initialize a new
track, while Poisson components that have already generated
detected potential objects may persist unnecessarily, leading
to false track initiations. The GNN-PMB tracker [22] utilizes
a full measurement-driven approach for generating λb

k(x) but
removes all Poisson components at the pruning step. This
aggressive pruning strategy may result in track initialization
failures.

OptiPMB proposes a new pruning strategy to address
these limitations. Specifically, the PPP pruning module marks
Poisson components that generate any first-time detection
hypothesis during the PMB update step and assigns a counter
variable to each Poisson component to track its survival
duration. After the PPP prediction and update steps, the
pruning module removes all marked Poisson components to
prevent repeated track initialization. Additionally, any remain-
ing Poisson components that have persisted for more than
ηstep time steps are discarded. This PPP pruning mechanism
balances between reliable track initialization and computa-
tional efficiency, benefiting MOT performance in complex
scenarios.

2) Optimized Track Extraction (OTE): After performing
PMB prediction and update, data association, and PMB prun-
ing steps, OptiPMB extracts object states from the posterior
PMB density f (Xk |Z1:k) and outputs the estimated object
tracks at current time. The previous PMBM/PMB-based track-
ers [20], [21], [22] apply an existing probability filter to
extract tracks, where the Bernoulli component Xi

k with an
existing probability ri

k exceeding a predefined threshold ηext
are selected as object tracks. However, relying on a single
extraction threshold makes it difficult to achieve both fast track
initialization and efficient track termination simultaneously, as
a high threshold may delay track initialization, while a low
threshold may cause misdetected or lost tracks persist longer
than necessary and result in false positive errors.

To improve the flexibility of track extraction, OptiPMB
introduces a misdetection counter and redesigns the existing
probability filter by applying two extraction thresholds ηext1
and ηext2, satisfying ηext1 ≤ ηext2. The IDs of extracted tracks

are recorded in a set Tk. Consider a Bernoulli component Xi
k,

the track extraction logic is as follows:
• If the track corresponding to Xi

k has not been extracted
previously, i.e., ti

k < Tk−1, then Xi
k is extracted as an object

track if its existence probability satisfies ri
k ≥ ηext1.

• If ti
k ∈ Tk−1, Xi

k is extracted only if ri
k ≥ ηext2 and

the misdetection counter variable xi
cnt,k is smaller than a

predefined limit ηcnt.
This redesign of track extraction strategy allows faster

track initialization with a lower extraction threshold ηext1.
Additionally, when an existing object is misdetected over
multiple time steps, the introduction of ηext2 and ηcnt enables
faster track termination, thereby reducing false positive errors.

V. EXPERIMENTS AND PERFORMANCE ANALYSIS

A. Dataset and Implementation Details

The proposed OptiPMB tracker is compared with published
and peer-reviewed state-of-the-art online 3D MOT methods
on two widely used open-source datasets: the nuScenes dataset
[18] and the KITTI dataset [19]. The official nuScenes tracking
task evaluates 3D MOT performance across seven object cat-
egories (bicycle, bus, car, motorcycle, pedestrian, trailer, and
truck) using average multi-object tracking accuracy (AMOTA)
and average multi-object tracking precision (AMOTP) [8] as
primary evaluation metrics. The official KITTI object tracking
benchmark evaluates 2D MOT performance, which involves
tracking 2D object bounding boxes in camera coordinates
for car and pedestrian categories. It primarily uses high-order
tracking accuracy (HOTA) [66] as the main evaluation metric.
To provide a more comprehensive performance analysis, we
extend the evaluation metrics as follows:
• nuScenes Dataset: We incorporate the HOTA metric

to further evaluate 3D MOT performance. Specifically,
HOTA evaluates tracking accuracy by matching tracking
results and ground truths based on a similarity score S
[66]. To adapt HOTA for 3D MOT evaluation, we define
the similarity score S as:

S = max[0, 1-D(x̂xy, xxy)/d0] (41)

where D(x̂xy, xxy) calculates the Euclidean distance
between an object’s estimated 2D center position x̂xy and
the ground truth center position xxy on the ground plane,
d0 is the distance threshold, beyond which the similarity
score reduces to zero. For the nuScenes dataset evalua-
tion, we set the distance threshold as d0 = 2m, meaning
that an estimated object can be matched with a ground
truth if their 2D center distance satisfies D(x̂xy, xxy) ≤ 2m.
This matching criterion is consistent with the official
nuScenes tracking task settings,2 ensuring that our HOTA-
based evaluation aligns with standard benchmarks for fair
comparison.

• KITTI Dataset: We evaluate 3D MOT accuracy using the
multi-object tracking accuracy (MOTA), AMOTA, and
scaled AMOTA (sAMOTA) metrics, following the widely
accepted protocol proposed in [8].

2https://www.nuscenes.org/tracking
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Fig. 4. Qualitative comparison among our proposed OptiPMB, Fast-Poly [14], GNN-PMB [22], and ShaSTA [3] on the nuScenes validation set (Scene-0095).
Black solid boxes denote ground truth objects. Dashed boxes represent estimated objects, with distinct colors indicating different IDs. Dashed colored lines
depict object trajectories. ID switch errors are highlighted by red arrows.

TABLE I
FINETUNED OPTIPMB PARAMETERS

Other commonly used secondary metrics, including detection
accuracy score (DetA), association accuracy score (AssA),
multi-object tracking precision (MOTP), true positives (TP),
false positives (FP), false negatives (FN), and ID switches
(IDS), are also reported in the following evaluations (see [8],
[18], [66] for definitions of these metrics). As shown in Table I,
the parameters of OptiPMB are finetuned on the nuScenes
and KITTI training sets using CenterPoint [67] and CasA [68]
detections, respectively.

B. Comparison With State-of-the-Arts

1) nuScenes Dataset: As shown in Table II, our proposed
OptiPMB demonstrates state-of-the-art online 3D MOT per-
formance on the nuScenes test set. Specifically, it achieves
overall AMOTA scores of 0.767 using the LargeKernel3D
[69] detector and 0.713 using the CenterPoint [67] detector.
With the same detectors, OptiPMB outperforms the previ-
ous learning-assisted [1], [44], learning-based [3], [4] and
model-based [10], [13], [14], [21], [22] methods in terms of
the primary tracking accuracy metric, AMOTA. Our method

also demonstrates strong performance in secondary metrics,
including TP, FN, FP, and IDS, especially comparing with
the previous model-based RFS trackers, the RFS-M3 [21] and
GNN-PMB [22]. Our method is fully open-sourced, with code
and parameters available,3 to demonstrate the potential of
RFS-based trackers and serve as a new baseline for model-
based 3D MOT.

To comprehensively evaluate our proposed method, we
further compare OptiPMB with other state-of-the-art 3D MOT
methods across all seven object categories on the nuScenes
validation set with extended metrics. For a fair comparison,
we select three open-source trackers as baselines: Fast-Poly
[14], GNN-PMB [22], and ShaSTA [3]. These trackers all
employ the TBD strategy and provide parameters finetuned
for the CenterPoint detector while representing different design
approaches of 3D MOT methods:
• Fast-Poly: A state-of-the-art model-based tracker using

two-stage data association and confidence score-based
track management. Its design can be categorized as TBD
with RV-based Bayesian filter (Section II-A1).

• GNN-PMB: The previous state-of-the-art PMB-based
tracker, categorized as TBD with RFS-based Bayesian
filter (Section II-A2).

• ShaSTA: A learning-assisted TBD tracker using spatial-
temporal and shape affinities to improve association
quality. Its design can be categorized as TBD with
learning-assisted data association (Section II-B1).

As demonstrated in Table III, with the same Center-
Point detector, OptiPMB achieves the highest overall HOTA
(52.06%) and AMOTA (0.741) among the compared methods,
indicating its superior tracking accuracy. OptiPMB surpasses
other methods in HOTA, AMOTA, and IDS across all object
categories, except for the bicycle category, where it ranks
second. Notably, compared to GNN-PMB, OptiPMB sig-
nificantly improves tracking accuracy (+6.03% HOTA and
+3.4% AMOTA) and track ID maintenance (−423 IDS) while

3Code is available at: https://github.com/dinggh0817/OptiPMB
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TABLE II
ONLINE 3D MOT PERFORMANCE OF OPTIPMB AND OTHER ADVANCED TRACKERS ON THE NUSCENES TEST SET. TRACKERS USING CENTERPOINT

[67] AND LARGEKERNEL3D [69] DETECTORS ARE DISTINGUISHED FOR FAIR COMPARISON, WITH DIFFERENT INPUT MODALITIES (C: CAMERA,
L: LIDAR) INDICATED. BOLD AND UNDERLINE DENOTE THE FIRST AND SECOND BEST RESULTS AMONG TRACKERS USING THE SAME

DETECTOR. BLUE HIGHLIGHTS THE PRIMARY TRACKING ACCURACY METRIC, AMOTA

TABLE III
ONLINE 3D MOT PERFORMANCE OF OPTIPMB AND OTHER STATE-OF-THE-ART TRACKERS ON THE NUSCENES VALIDATION SET. THE CENTERPOINT

[67] DETECTOR IS EMPLOYED FOR ALL TRACKERS FOR A FAIR COMPARISON. BOLD AND UNDERLINE DENOTE THE FIRST AND SECOND BEST
RESULTS WITHIN EACH CATEGORY. BLUE INDICATES THE TWO PRIMARY TRACKING ACCURACY METRICS, HOTA AND AMOTA

utilizing a similar PMB filter-based RFS framework. This
performance difference underscores the effectiveness of the
innovative designs and modules proposed in OptiPMB. HOTA
and its sub-metrics (AssA and DetA) in Table III are evalu-
ated across multiple localization accuracy thresholds without
considering object confidence scores or applying track interpo-
lation post-processing [66]. Consequently, the DetA and AssA
scores indicate that OptiPMB achieves high detection and
association accuracy while evaluating all raw tracking results.

A qualitative comparison in Fig. 4 also illustrates the superior
tracking performance of OptiPMB. In a challenging scenario
where high-velocity cars enter the observation area, OptiPMB
correctly initiates and maintains tracks. In contrast, the model-
based methods Fast-Poly and GNN-PMB fail to associate
the new objects with subsequent detections, leading to ID
switch errors. The learning-assisted tracker ShaSTA exhibits
fewer ID switches but repeatedly initializes tracks in the first
frame.
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TABLE IV

ONLINE 3D MOT PERFORMANCE OF OPTIPMB AND OTHER ADVANCED TRACKERS ON THE KITTI CAR VALIDATION SET. POINTRCNN [70],
POINT-GNN [71], AND CASA [68] DETECTORS ARE DISTINGUISHED FOR FAIR COMPARISON, WITH DIFFERENT MODALITIES

(C FOR CAMERA, L FOR LIDAR) INDICATED. BOLD AND UNDERLINE DENOTE THE FIRST
AND SECOND BEST RESULTS AMONG TRACKERS USING THE SAME DETECTOR

TABLE V

ONLINE 2D MOT PERFORMANCE OF OUR PROPOSED OPTIPMB AND OTHER ADVANCED TRACKERS ON THE KITTI CAR TEST DATASET. TRACKERS
USING POINTRCNN [70], POINT-GNN [71], AND CASA [68] DETECTORS ARE DISTINGUISHED FOR FAIR COMPARISON, WITH DIFFERENT

MODALITIES (C FOR CAMERA, L FOR LIDAR) INDICATED. BOLD AND UNDERLINE DENOTE THE FIRST AND SECOND BEST RESULTS
AMONG TRACKERS USING THE SAME DETECTOR. BLUE INDICATES THE PRIMARY TRACKING ACCURACY METRIC, HOTA

2) KITTI Dataset: Since the official KITTI object tracking
evaluation only includes 2D MOT metrics, we compare the
online 3D MOT performance of OptiPMB and other advanced
trackers on the car category of the KITTI validation dataset,
following the evaluation protocol proposed in [8]. This proto-
col designates sequences 1, 6, 8, 10, 12, 13, 14, 15, 16, 18,
and 19 in the original KITTI training set as the validation set.
As shown in Table IV, OptiPMB achieves superior tracking
accuracy on the KITTI validation set, outperforming other
state-of-the-art trackers that use the same PointRCNN [70],
PointGNN [71], and CasA [68] detectors in sAMOTA scores.
Here, the online 3D MOT results of CasTrack [68], MCTrack
[15], and RobMOT [72] are evaluated using their online
tracking configurations and finetuned parameters provided by
the authors. For reference, the 2D MOT performance for
the compared trackers on the KITTI test set is presented
in Table V. With the PointRCNN [70] and PointGNN [71]
detection results, OptiPMB achieves significantly higher track-
ing accuracy than the baseline LiDAR-only trackers [8], [50]
while generating the fewest false positives and ID switch
errors among the compared methods. Although OptiPMB
relies solely on LiDAR detection results, its HOTA score
is still comparable with camera-LiDAR fusion-based trackers
[2], [12], [29], [30]. Moreover, when utilizing higher-quality

CasA [68] detection results, OptiPMB surpasses even the
recently proposed RobMOT [72] and MMF-JDT [76] trackers
in HOTA, DetA, MOTA, TP, and FP scores, demonstrating a
strong tracking performance.

C. Ablation Study on OptiPMB

We conduct ablation experiments on the nuScenes valida-
tion set to assess the influence of the proposed components
in OptiPMB, as summarized in Table VI. In the baseline
tracker, the adaptive detection probability pd(x+) is replaced
with the fixed parameter pd0, and object tracks with exis-
tence probabilities exceeding the threshold ηext1 are extracted.
In addition, the HABM and OTE modules are replaced by the
object birth model and the PPP pruning strategy employed
in the GNN-PMB [22] tracker. Except for the detection
probability and existence threshold settings described above,
all tracker variants share identical parameter configurations.
For clarity of comparison, trackers equipped with different
numbers of modules are grouped together and ranked within
each group according to their AMOTA scores. To analyze
the runtime impact of different modules, we also report the
average processed frames per second (FPS) of the Python
implementation of each tracker variant on our test platform,
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TABLE VI

ABLATION STUDY OF OPTIPMB ON THE NUSCENES VALIDATION
SET USING THE CENTERPOINT [67] DETECTOR

running Ubuntu 22.04 with an AMD 7950X CPU and 64
GB of RAM. Consistent with common practice in the TBD
literature, these FPS values are measured without accounting
for detector latency.

As shown in Table VI, HABM is the primary contributor
to the effectiveness of OptiPMB, as trackers equipped with
HABM achieve the highest AMOTA scores within each group.
Incorporating this birth model not only substantially boosts
the baseline tracking performance (+3.0% AMOTA), but also
improves both track ID maintenance and runtime efficiency
(–36 IDS, +2.6 FPS) by generating more reliable newborn
objects and suppressing false potential objects. However, the
other three modules exhibit more complex effects and cannot
effectively improve tracking accuracy in isolation. Specifi-
cally, adding ADP reduces ID switch errors by enhancing
the maintenance of occluded tracks, but it also introduces
additional false tracks, which can reduce tracking accuracy.
The RPP module reduces false negatives by retaining PPP
components for a longer duration, but at the cost of increased
tracking latency due to the larger number of potential objects.
The OTE module improves accuracy and FPS by reducing
false tracks, yet simultaneously increases ID switch errors.
Nevertheless, when combined with HABM, the adverse effects
of these modules are mitigated, leading to the improvement
in overall tracking performance. Consequently, our OptiPMB
tracker equipped with all four modules achieves the highest
tracking accuracy (+4.5% AMOTA) among all tracker vari-
ants, demonstrating the effectiveness of their joint design.

D. Parameter Sensitivity

The performance of model-based 3D MOT methods often
relies on careful selection of hyperparameters. Therefore, we
analyzed the impact of key parameters in OptiPMB on the car
category in the nuScenes validation set. As shown in Fig. 5,
the survival probability (ps), clutter rate (µc), and misdetection
counter threshold (ηcnt) significantly influence both AMOTA
and HOTA scores. To achieve better track continuity and
recall performance without sacrificing tracking accuracy, we

Fig. 5. Impact of key OptiPMB parameters on tracking accuracy for cars in the
nuScenes validation set with CenterPoint [67] detections. Selected parameters
are used to report the results in Table III.

suggest setting these parameters to ps = 0.99, µc = 1, and
ηcnt = 2. OptiPMB is less sensitive to other hyperparameters,
demonstrating the robustness of our proposed adaptive designs.

VI. CONCLUSION

In this study, we introduced OptiPMB, a novel 3D multi-
object tracking (MOT) approach that employs an optimized
Poisson multi-Bernoulli (PMB) filter within the tracking-by-
detection framework. Our method addressed critical challenges
in random finite set (RFS)-based 3D MOT by incorporating
a measurement-driven hybrid adaptive birth model, adaptive
detection probabilities, and optimized track extraction and
pruning strategies. Experimental results on the nuScenes and
KITTI datasets demonstrated the effectiveness and robust-
ness of OptiPMB, which achieved state-of-the-art performance
compared to existing 3D MOT methods. Consequently, a
new benchmark was established for RFS-based 3D MOT
in autonomous driving scenarios. Future research will focus
on enhancing real-time performance of OptiPMB through
parallelization techniques.
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