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Abstract—Sensor arrays generating differential received signal
strength (DRSS) measurements have found many applications in
robotics. However, accurate calibration of these sensor arrays
remains a challenge. Most existing methods are impractical in
that they assume to know signal source positions or certain
parameters (i.e., path loss exponent), and try to estimate the
others. In this paper, we adopt graph simultaneous localization
and mapping (SLAM) as a general framework for jointly
estimating the source positions and parameters of the DRSS
sensor array. Our contributions are twofold. On the one hand,
by using a Fisher information matrix approach, we conduct a
systematic observability analysis of the corresponding SLAM
setup for the calibration problem. On the other hand, we
propose an effective procedure to select the initial value which
is fed to Levenberg-Marquardt iterations for further improving
optimization accuracy and convergence. Extensive simulation
and hardware experiments show that the proposed method
renders high-quality calibration results. All the codes and data
are publicly available at https://github.com/SUSTech2022/DRSS-
sensor-array-calibration.
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I. INTRODUCTION

Sensor array-based systems utilizing received signal
strength (RSS) and differential RSS (DRSS) measurements
can be employed in numerous robotic applications such as
localization and tracking [1]-[3], navigation [4]-[5], mapping
[6]-[7], multi-modal perception [8]-[10]. Accurate calibration
of RSS/DRSS sensor arrays, as for other sensing modalities
[11]-[16], is crucial for satisfactory performance. However,
existing calibration methods for RSS/DRSS sensor arrays are
impractical in that they either assume to know the signal
source or the sensor positions or certain parameters (i.e., path
loss exponent), and try to estimate the others. For example,
by assuming to know the source positions, [17] proposed an
iterative algorithm to estimate sensor locations and RSS model
parameters. [18] proposed several techniques for estimating
the path loss exponent (PLE) in the RSS model using power
measurements and geometric constraints.

L. Fu and X. Qiao contributed equally to this work. This work was sup-
ported by the Science, Technology, and Innovation Commission of Shenzhen
Municipality, China [Grant No. ZDSYS20220330161800001].

To our best knowledge, there is no existing work on joint
calibration of the DRSS sensor array and source localization.
The above problem can be conceptually considered as a
standard SLAM problem [19]-[20], where the sensor array
and the signal source act as features in the environment and
the robot, respectively, and all measurements are used in the
optimization as done in full information estimation [21]-[22].
Then, two important questions arise.

On the one hand, it is critical to assess whether the infor-
mation included in the measurements is sufficient to estimate
all the unknown variables. This is the so-called observability
problem in the SLAM literature [23]-[26]. On the other hand,
as with the standard graph SLAM, the considered calibration
problem is a nonlinear least squares (LS) problem. Therefore,
it is important to develop reliable calibration algorithms so that
accurate parameter estimates can be obtained. However, many
existing methods for solving the aforementioned nonlinear LS
problems adopt Gauss-Newton types of iterations and require
the initial value to be close to the true value (otherwise, the
algorithm can lead to a local minimum or even diverge). This
incurs significant difficulties in obtaining accurate estimates of
the former calibration problem.

Motivated by the above observation, our major contributions
in this paper are twofold. First, via a Fisher information
matrix (FIM) approach [23]-[24], we conduct a systematic
observability analysis of the corresponding SLAM setup for
the calibration problem. Specifically, we establish necessary
or sufficient conditions for the identifiability of unknown pa-
rameters. Second, we propose an effective procedure to select
the initial value which is fed to Levenberg-Marquardt (LM)
[27] iterations for further improving optimization accuracy and
convergence. Extensive numerical simulations and hardware
experiments show that the proposed method renders high-
quality calibration results. Finally, as it is to be discussed
later in the paper, given the nature of DRSS sensor models,
calibration of the sensor array requires knowing the initial
position of the signal source. This seems to be restrictive but
can be handled in the calibration process by initializing the
signal source at an approximately known position in a pre-
defined global reference frame. Notation: diag(A,B) denotes
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a block diagonal matrix with A and B being its block diagonal
entries. diagn(A) denotes a block diagonal matrix with A as
block diagonal entries for n times.

II. PRELIMINARIES AND PROBLEM STATEMENT
In a 3D calibration scenario with a sensor array containing

N RSS sensors, there are consecutive signals emitted by
a single signal source at K spatial positions. Denote the
unknown positions of the i-th sensor and the source by
si = [sxi , s

y
i , s

z
i ]

T ∈ R3 and χk = [χx
k, χ

y
k, χ

z
k]

T ∈ R3,
respectively. The measurement of the i-th sensor is given by
(in dB) [4]

P k
i = P0 − 10γ log10

dki
d0

+ vi, (1)

where P0 represents the unknown source transmit power at
a reference distance d0 (usually taken to be 1 m); dki is the
Euclidean distance between the i-th sensor and the source at
time tk (k = 1, 2, . . . ,K, where K is the total number of time
steps); γ denotes the PLE; the term vi ∼ N (0, σ2

i ) represents
the Gaussian noise (here we assume σi to be known).

If we select the first receiver as the reference sensor, i.e.,
s1 = 0, then (1) can be converted to the DRSS model:

P k
i1 = −10γ log10

(
dki
dk1

)
+ vi1, (i = 2, 3, . . . , N) (2)

where vi1 = vi − v1 ∼ N (0, σ2
i + σ2

1). Denote

s =
[
(s2)

T
, (s3)

T
, · · · , (sN )

T
]T

∈ R3(N−1), (3)

as the unknown states of the sensor array; and denote

x =
[
sT, (χ1)

T, (χ2)
T, · · · , (χK)T, γ

]T ∈ R3(N−1)+3K+1,
(4)

as the whole unknown vectors to be identified. As shown in
Fig. 1, the graph-based SLAM framework is a feasible solution
to the above problems by treating the moving signal source as
a robot and the sensor array as a single landmark (given that
all sensors are “observed” at all times) [28].

For the position-position constraints, the measurement of
the relative motion between positions k and k + 1 (k =
1, 2, · · · ,K − 1) can be expressed as

zp−p
k,k+1 = χk+1 − χk +wk, (5)

where wk ∼ N (0,Q), and Q > 0 ∈ R3×3.
With regards to position-landmark constraints, the DRSS

measurements related to each sensor when the source moves
to the position at time step k can be defined as

zp−l
k =

[
P k
21, P

k
31 . . . , P

k
N1

]T ∈ RN−1. (6)

From (2) we know that DRSS measurements zp−l
k are subject

to Gaussian noise v = [v21, v31, · · · , vN1]
T ∼ N (0,P),

where P = diag(σ2
2 + σ2

1 , σ
2
3 + σ2

1 , · · · , σ2
N + σ2

1). Therefore,
the measurements can be combined as

z =
[
(zp−l

1 )
T
, (zp−p

1,2 )
T
, · · · , (zp−p

K−1,K)
T
, (zp−l

K )
T
]T

= g(x) + λ.
(7)

Position-landmark 
Constrained Measurements 
(edges) : DRSSLandmark node

(sensor array)

Signal source 
locations (nodes)

Position-position 
Constraints (edges) 

k+1

k

k-1

Fig. 1: Graph SLAM for joint source localization and DRSS
sensor array calibration

where g(x) is the combined observation model, and λ ∼
N (0,W) is the noise of the combined observations with the
covariance matrix W = diag(diagK−1(P,Q),P), therefore
the information matrices of the whole observation can be
written as Ω = W−1. Define the error function as

e(x) = ẑ(x)− z, (8)

where ẑ(x) represents the estimates of z. Then we have the
objective function/cost function as

F (x) = eTΩe. (9)

As in [23]-[24], using graph SLAM, the joint calibration of
the sensor array and source localization problem using DRSS
measurements can be treated as the following standard least
squares (LS) problem:

x∗ = argmin F (x). (10)

The observability of SLAM is equivalent to the non-
singularity of the FIM when described as a nonlinear LS
parameter estimation problem [23]. The FIM of an unbiased
estimator for the case of DRSS is defined as

IFIM ≜ E{[∇xlnΛ(x)][∇xlnΛ(x)]
T}, (11)

where Λ(x) ≜ p(z|x) is the likelihood function, and the partial
derivative should be calculated at the true value of x [29, chap.
2]. By following steps in [24] and [26], the FIM in (11) for
models in (II) can be formulated as

IFIM = JTW−1J, (12)

where J are the Jacobian matrix of the function g(•) in (II)
w.r.t. x [30, pp. 569], and will be discussed later in the
paper (see in (18)). When W > 0, we have rank(J) =
rank(IFIM ).
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If an initial value x0 is given, the numerical solution of (10)
can be obtained by using the popular GN or LM algorithms.
The idea is to approximate the cost function by its first-order
Taylor expansion around x0:

e(x0 +∆x) ≈ l(∆x) ≡ e(x0) + J∆x, (13)

where J is the Jacobian of e(x) computed in x0, and has the
same form as in (18). Substituting (13) into (10) yields:

F (x0 +∆x) ≈ L(∆x) ≡ [l(∆x)]TΩl(∆x)
= F (x) + 2eTΩJ∆x+∆xTJTΩJ∆x.

(14)

Let L′(∆x) = 0, we have:

H∆x = −b. (15)

where H = JTΩJ, and b = eTΩJ. Therefore the iteration
step size ∆x can be obtained by solving Eq. (15). However,
H is usually semi-positive definite, so the GN method cannot
guarantee the convergence of the iterations. To address this
issue, the LM method introduces a damping factor µ > 0

(H+ µI)∆x = −b. (16)

to ensure H + µI > 0. Note that convergence and accuracy
of GN or LM methods largely depend on whether the initial
value is close to the true value.

Problem statement: (1) find conditions whether and under
which the FIM associated with the DRSS1 measurements, i.e.,
IFIM in (12) is non-singular, or equivalently, the Jacobian
matrix J has full column rank; (2) design an efficient initial
value selection framework and calibration algorithm to solve
the nonlinear LS (10).

III. MAIN RESULTS
A. Observability Analysis

For the DRSS measurement model, the first sensor is con-
sidered as a reference, its relevant variables are all assumed to
be zero and are excluded from the observability analysis. Thus,
we have J ∈ Rn1×n2 , with n1 = (N−1)K+3(K−1), n2 =
3(N − 1) + 3K + 1, where n1 and n2 are the numbers of
measurements and unknown variables, respectively. For J to
be of full column rank, it is necessary that

n1 ≥ n2 =⇒ K ≥ 4

N − 1
+ 3. (17)

Proposition 1. For the case of DRSS measurements, the
Jacobian matrix can be written as

J =



L1

03×3Ñ
...

LK−1

0
LK︸ ︷︷ ︸
J1

T1 0Ñ×3 · · · 0 0

−I3 I3 · · · 0 0
...

...
. . .

...
...

0 0 · · · TK−1 0
0 0 · · · −I3 I3
0 0 · · · 0 TK︸ ︷︷ ︸

J2=[J21,J22,··· ,J2K ]

B1

0Ñ×1
...

BK−1

0
BK


︸ ︷︷ ︸

J3

,

(18)

1Our investigation shows that the SLAM problem associated with the RSS
model (see Eq. (1)) is not observable within the FIM framework, so we focus
on the DRSS case.

where Ñ = N − 1, and expressions of Lk,Tk and Bk (for
k = 1, 2, ...,K) can be found in (23)-(28).

Proof. First, from (5) we notice that the corresponding Ja-
cobian matrices are ∂χ∆

k−1

χk−1
= −I,

∂χ∆
k−1

χk
= I. Second, for

i = 1, 2, ..., N , the distance between the i-th sensor and the
source at time instance tk is

dki =

√
(∆xi k)

2
+ (∆yi k)

2
+ (∆zi k)

2
, (19)

where

∆xi k = χx
k−sxi , ∆yi k = χy

k−syi , ∆zi k = χz
k−szi . (20)

Based on (2) and (6), we have

zk = −10γ

[
log10

dk2
dk1

· · · log10
dkN
dk1

]T
+

 v21
...

vN1

 ,

(21)
with dki as given in (19), for i = 2, 3, ..., N , and

dk1 =

√
(χx

k)
2
+ (χy

k)
2
+ (χz

k)
2
, (22)

is the distance from the source position at the k-th time
instance to the origin. Based on (3) and (21), we have

Lk =
∂zk
∂s

=
[
Jk
2 Jk

3 · · · Jk
N

]
∈ RÑ×3Ñ , (23)

where for i = 2, 3, ..., N , Jk
i ∈ RN×3, and only entries of Jk

i

on its (i− 1)th row are nonzero, i.e.,

Dk
i = Jk

i (i− 1 :) = ui
k ∈ R1×3 , (24)

with ui
k defined in (26). We also have

Tk =
∂zk
∂χk

=
[
Jk x Jk y Jk z

]
= −

[
u2
k,u

3
k, · · · ,uN

k

]T
+ [vk,vk, · · · ,vk]

T ∈ RÑ×3,
(25)

with

ui
k =

[
10γ∆xi k(
dki

)2
ln 10

,
10γ∆yi k(
dki

)2
ln 10

,
10γ∆zi k(
dki

)2
ln 10

]
, (26)

vk =

[
10γχx

k(
dk1

)2
ln 10

,
10γχy

k(
dk1

)2
ln 10

,
10γχz

k(
dk1

)2
ln 10

]
, (27)

and

Bk =
∂zk
∂γ

= −10

[
log10

dk2
dk1

· · · log10
dkN
dk1

]T
∈ RÑ×1.

(28)
The results follow from the definition of the Jacobian [30, pp.
569].
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Lemma 1. The Jacobian matrix J in (18) is of full column
rank if and only if

F =


L1

L2

...
LK︸ ︷︷ ︸
L

T1

T2

...
TK︸ ︷︷ ︸
T

B1

B2

...
BK


︸ ︷︷ ︸

B

, (29)

is of full column rank.

Proof. The proof follows from [23] and is skipped here.

Theorem 1. The Jacobian matrix J in (18) is of full column
rank only if both the following statements hold true:

(i) For every sensor, i.e., i = 2, 3, · · · , N , there exist at
least three time steps, 1 ≤ ksi ≤ K, with K satisfying (17)
and 1 ≤ s ≤ 3, such that

Gi =
[
D

k1
i

i ,D
k2
i

i ,D
k3
i

i

]
, (30)

with D
ks
i

i defined in (24), is of full column rank;
(ii) There exist r1, r2, r3(2 ≤ r1, r2, r3 ≤ N) (any two or

all of r1, r2, r3 can be equal, or they can be all different) and
at least three time instances2 k1, k2, k3(1 ≤ k1, k2, k3 ≤ K),
out of K time steps (with K satisfying (17)), such that the
matrix3

Or =
[
Ok1

r1 ,O
k2
r2 ,O

k3
r3

]
, (31)

is of full column rank, where Ok
i = −ui

k + vk, with ui
k and

vk defined in in (26) and (27).

Proof. From Lemma 1, we know that J has full column rank
if and only if F has full column rank. For F to have full rank,
L, T and B in (29) have to be of full column rank.

(i) Note that from (24) and (23), Lk can be expressed as
Lk = diag(Dk

2 ,D
k
3 , · · · ,Dk

N−1,D
k
N ). By omitting the zero

blocks in J1, one has that

J1 =


diag(D1

2,D
1
3, · · · ,D1

N−1,D
1
N )

diag(D2
2,D

2
3, · · · ,D2

N−1,D
2
N )

...
diag(DK

2 ,DK
3 , · · · ,DK

N−1,D
K
N )

 ,

and denote each column in J1 as J1i ∈ RK(N−1)×3, for i =
2, 3, ..., N . Moreover, it holds that rank(J1) = rank(J1).
Also, since the columns of J1i are independent of each other,
the full column rank of J1 (and J1) is equivalent to the full
column rank of J1i ∈ RK(N−1)×3, for i = 2, 3, ..., N . Note
J1i has full rank if and only there exist at least four time steps,
1 ≤ ksi ≤ K, with K satisfying (17) and 1 ≤ s ≤ 3, such that
Gi in (30) has full column rank.

(ii) T in (29) is of full column rank only if a 3× 3 matrix
formed by at least one of the 3-permutation of its rows is of

2Here we use time instances, instead of time steps, to incorporate the
possibilities that any two or all the three of k1, k2, k3 might be equal.

3Note that by writing Or as in (31), we implicitly exclude the cases where
ki = kj and ri = rj , because under such conditions, it is impossible for Or

to have full column rank.

full rank. From the expressions of Tk in (25), if k1 = k2 = k3
(r1 = r2 = r3), one must have that r1 ̸= r2 ̸= r3 (k1 ̸= k2 ̸=
k3), for Or to have full rank. Similarly, if ki = kj and ri = rj ,
it is impossible for Or to be of full rank. The above arguments
lead to the statements in part (ii).

Note that the four time steps necessary for condition (30)
to hold may vary depending on the sensor. Also, Theorem 1
reveals whether condition (29) (or conditions (30)-(31)) holds
relies on the sensor array configuration and the source trajec-
tory (i.e., si and χk). This naturally raises the question of at
what sensor array setup and source trajectory the observability
of the whole system is impossible. We will state our findings
in the following theorem.

Theorem 2. The following statements hold true:
(i) If all sensors (except the first one which is set as the

reference) locate on the surface of the same sphere (x− a)
2
+

(y − b)
2
+ (z − c)

2
= r2 where a, b, c and r take any real

numbers, and for k = 1, 2, · · · ,K, the source is static and
located at the sphere centre, then it is impossible for F in
(29) to have full column rank.

(ii) For k = 1, 2, · · · ,K, if the trajectory of the source is
always in the same plane y = αx, z = βy or x = θz as all
sensors, where α, β and θ takes any real number, then it is
impossible for L and T in (29) to have full column rank.

(iii) If either of (i) or (ii) occurs, the Jacobian matrix J will
not be of full column rank, which leads to an unobservable
SLAM problem.

Proof. (i) When all sensors (except the first one) are on the
surface of sphere (x− a)

2
+ (y − b)

2
+ (z − c)

2
= r2, we

have χk = [a, b, c] , dk1 = d1 = constant, dk2 = dk3 = · · · =
dkN = r, so that

T
′
= L1,3 + L4,6 + · · ·+ L3Ñ−2,3Ñ +T

=
10γ

(d1)2 ln 10

 a, b, c
...

a, b, c

 ,

where Li,j denotes the ith to jth columns of L. It is clear that
T

′
is not of full column rank. Hence, it is impossible for F

to have full column rank.
(ii) Without loss of generality, assume the source trajectory

and si are in the plane y = αx, that is χy
k = αχx

k, s
y
i = αsxi

so we have ∆yi k = α∆xi k, with ∆xi k and ∆yi k defined
in (20). Thus, it leads to the non-full column rank of L and
T.

(iii) This part follows from the fact that if F is not of full
rank, then J loses rank either. This completes the proof.

B. Joint Estimation Algorithm

We set the coordinate frame as follows: Let the position of
the first sensor be the coordinate origin, the second sensor be
on the positive half-axis of the X-axis, and the plane where
the first three sensors locate be the XOY plane. Therefore,
once the positive direction of the Z-axis is determined, the
coordinate system is determined as well.
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1) Selection of Initial Value: Since the performance of
the GN method is sensitive to the initial value, it is important
to come up with a reliable initialization procedure. As for a
standard SLAM problem [24], here for the joint calibration
of DRSS sensor array and source localization, all the mea-
surements in (II) only contain information about either the
relative positions of the signal source or between the source
and the sensor array. Hence, the initial source position w.r.t.
an arbitrary global coordinate frame is not observable. As in
SLAM, this issue is typically addressed by placing the origin
of the global coordinate frame at the initial source position.
For calibration purposes, we cannot do this (since the origin
is taken to be the first sensor position). However, we can
initialize the source at a position that is approximately known
w.r.t. the origin. Hence, we assume a good guess of the initial
position of the signal source χ̂1. Also, based on engineering
experience [18], [31]-[32], the value of the PLE γ lies in the
interval [1, 7], which we take as prior information. However,
its true value is not assumed to be known. For initialization, we
randomly select the value of γ from the interval [1, 7]. Thus,
our proposed initial value estimation framework is described
as follows:

(i) Estimation of the initial value of the signal source
positions: By combining the relative position measurements
zp−p
k,k+1 with the approximate initial position of the source χ̂1,

we can estimate the trajectory of the signal source. More
specifically, the signal source positions can be estimated as:

χ̂k+1 = χ̂k + zp−p
k,k+1, (32)

where k = 1, 2, · · · ,K − 1.
(ii) Estimation of the initial value of the sensor positions:

We use the spatial four-point localization method [33] to solve
for the initial sensor array positions. This method requires four
known source positions in space so that several equations can
be constructed using the constraints in spatial geometry to
solve for the coordinates of one particular unknown point (i.e.,
an unknown sensor location).

Assume χ̂kj
(j = 1, 2, 3, 4, kj = 1, 2, · · · ,K) are the

coordinates of four known signal positions obtained from
step (i), si (i = 2, 3, · · · , N − 1) are the coordinates of the
unknown sensor to be solved, and d

kj

i is the distance between
χ̂kj and si. Based on 3D geometry, we have:

(
χ̂x
k1

− sxi
)2

+
(
χ̂y
k1

− syi
)2

+
(
χ̂z
k1

− szi
)2

= (dk1
i )2(

χ̂x
k2

− sxi
)2

+
(
χ̂y
k2

− syi
)2

+
(
χ̂z
k2

− szi
)2

= (dk2
i )2(

χ̂x
k3

− sxi
)2

+
(
χ̂y
k3

− syi
)2

+
(
χ̂z
k3

− szi
)2

= (dk3
i )2(

χ̂x
k4

− sxi
)2

+
(
χ̂y
k4

− syi
)2

+
(
χ̂z
k4

− szi
)2

= (dk4
i )2

.

(33)
For dkj

i in (33), we can estimate its value based on the DRSS
model (2) as d

kj

i = d
kj

1 10m
k
i , where mk

i = P
kj

i1 /(−10γi).
After eliminating some squared terms, (33) can be simplified
and rewritten in the following matrix form

Mc = d, (34)

where c = [sxi , s
y
i , s

z
i ]

T is the position of sensor i to be
estimated, and detailed expressions of M and d are skipped

here due to limited space. Note that Eq. (34) has a unique
solution as long as the matrix M is of full rank, i.e., the four
points chosen are not coplanar.

2) Algorithm Implementation: The algorithm flow of joint
calibration of the DRSS sensor array and source localization is
shown in Algorithm 1. Note in step 12 of Algorithm 1, we set
an upper error limit lim to discard bad initial values. Given
K ≫ 4, so one can continuously re-select four points χ̂kj to
improve initial value calculation until F (x0) < lim. For the
calibration task after the initial value selection procedure, we
choose the LM method to improve convergence and estimation
accuracy. Finally, the parameter estimates are saved to gest and
returned by the algorithm.

Algorithm 1 Joint Calibration of the DRSS Sensor Array and
Source Localization
Input: initial graph graw (includes initial value x0)
Output: estimated graph gest (includes final estimate x̂)
1: g0 = graw
2: g0.gamma = random([1, 7])
3: χ̂1 = [x0, y0, z0]

T // initial position of the signal source
4: for k = 1 : K − 1 do
5: χ̂k+1 = χ̂k + zp−p

k,k+1 // Eq. (32)
6: end for
7: g0.source = [χ̂1, χ̂2, · · · , χ̂K ]T

8: g0.sensor1 = [0, 0, 0]T //fix the reference sensor
9: [g0.sensor2, · · · , g0.sensorN ] = SensorInit(g)// Eq.

(34)
10: g1 = LM(g0) //iterate using LM method
11: cost = computeGlobalError(g1) // cost function
12: while cost > lim do
13: [g0.sensor2, · · · , g0.sensorN ] = SensorInit(g)
14: g1 = LM(g0)
15: cost = computeGlobalError(g1)
16: end while
17: gest = g1
18: return gest

IV. NUMERICAL SIMULATIONS
A. Observability Verification

We design a sensor array with 8 sensors and two source
trajectories with K = 80 or 49 to simulate some cases with
DRSS measurements where observability is guaranteed, as
shown in Fig. 2. For trajectory 1, following Theorem 1, we
select k12 = 9, k22 = 14, k32 = 23, then Gi in (30) becomes

G2 =

 −19.7407 7.8963 −7.8963
−5.3543 14.2782 0
15.6346 0 20.8461

 ,

with rank(G2) = 3, i.e., it has full column rank. If we select
r1 = 4, r2 = 6, r3 = 6, and k1 = 7, k2 = 7, k3 = 9, so that
Or in (31) becomes

Or =

 3.4068 −20.8795 −29.2314
3.4068 −29.2314 −20.8795
3.4068 29.2314 −20.8795

 ,
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with rank(Or) = 3, which means Or has full column rank.
We also verify that F in (29), of dimension 797×25, is of full
column rank. Furthermore, we have the Jacobian matrix J in
(18), which is a 797 × 262 matrix and has full column rank.
Therefore, the system is observable. To double confirm, we
run Algorithm 1. As can be seen in Fig. 2(b), the estimated
sensor array and signal source locations have converged close
to their corresponding ground truth locations. We can also
perform similar validations for trajectory 2. We also simulate
the unobservable cases in Theorem 2 and verify that F is not
of full column rank, and the algorithm fails to find the solution
to the LS in (10). Details are skipped here.

(a) Trajectory 1: initial guess g0
(b) Trajectory 1: estimated results
gest

(c) Trajectory 2: initial guess g0 (d) Trajectory 2: estimated results
gest

Fig. 2: Simulation estimates of two kinds of trajectories:
segmented linear (trajectory 1) and non-linear (trajectory 2).

B. Algorithm Error Analysis

We analyzed the estimation error for each trajectory using
the root mean square error (RMSE). Table I shows the average
RMSEs for 50 runs of the algorithm using different initial
values: Lv1 and Lv2 are obtained by adding Gaussian noise
to the ground truth values, while ours uses our initial value
selection method. The results show that our method achieves
similar RMSEs to those using ground truth plus noise, without
relying on true values for initialization. We also found that
calibration results using segmented linear trajectories are sig-
nificantly better than those using nonlinear trajectories. Fig. 2
confirms the validity of the algorithm.

TABLE I: Average RMSE of estimated parameters*

Trajectory 1 (segmented linear) Trajectory 2 (non-linear)

Noise Level χ s γ χ s γ

Lv1 0.00012 0.00012 0.00157 0.00123 0.00114 0.00905
Lv2 0.00014 0.00014 0.00180 0.00164 0.00155 0.01190
Ours 0.00015 0.00014 0.00191 0.00539 0.00521 0.05096
* Note: χ denotes source positions of all time steps, s denotes positions of the sensor array, and
γ denotes the PLE. The unit of χ and s in the table is meter.

V. EXPERIMENTS

A. Experimental Environment Configuration

The experimental site was carefully selected to minimize
measurement error. The site chosen was an open laboratory
measuring 9.1m× 14.4m× 3.6m. As depicted in Fig. 3, the
experiment was conducted on a flat surface measuring 1.2m×
1.2m, with the floor grid serving as the unit of measurement.

For the selection of the initial value of γ, we calculated from
several experimental data that γ falls roughly on the interval
[2, 3] according to

γ ≈ P k
i1

−10 log10

(
dki
dk1

)
To facilitate the estimation of the RMSE, we take the true
value of γ as 2.5. In this experiment, we utilized a total of
five ZigBee units capable of transmitting and receiving RSS
signals. One unit was designated as the router and served
as the signal-transmitting source in the ZigBee network. The
remaining four units were designated as terminals and served
as signal receivers to measure the value of the DRSS. The
Cartesian coordinate system was established with the antenna
base of sensor 1 as the reference node, the X-axis (blue
line) in the transverse direction, and the Y-axis (green line)
in the longitudinal direction, as shown in Fig. 3. The four
sensors were positioned at the vertices of a rectangle on the
measuring unit, with coordinates sensor 1 = [0.0, 0.0, 0.0]T,
sensor 2 = [1.2, 0.0, 0.0]T, sensor 3 = [0.0, 1.2, 0.0]T, sen-
sor 4 = [1.2, 1.2, 0.0]T. The signal source originated from
[0.2, 0.0, 0.0]T and its trajectory is depicted in Fig. 5(a). Each
step advanced 0.2m in one direction, and RSS data of four
sensors for K = 74 were recorded.

B. Analysis of Experimental Results

To evaluate the effectiveness of our proposed joint calibra-
tion and localization algorithm (Algorithm 1), we input the
collected trajectory data and run each trajectory 80 times to
obtain 80 independent sets of estimates. We then calculate the
mean of the estimates obtained from 10, 20, ..., up to 80 sets,
respectively, and record the corresponding RMSEs. We also
generate boxplots to visualize the distribution of the RMSE
values.

To enhance the precision of our estimates and mitigate the
influence of outliers, we employed two commonly used statis-
tical techniques, namely the σ rule and the interquartile range
(IQR) method. We evaluated the effect of outlier processing
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Fig. 3: Experiment Setup

by recalculating the RMSEs of the mean estimates before and
after processing, as depicted in Fig. 4. The results show that
the mean RMSEs of both the source and the sensor array
estimates decrease gradually with an increasing number of
estimated data sets, indicating an improvement in estimate
accuracy. However, we also noticed that the RMSEs start to
increase beyond a certain number of data points (around 50),
suggesting that collecting more data may not significantly
impact the results. Therefore, we conclude that 50 sets of
data may be sufficient for our proposed joint calibration and
localization algorithm. Without loss of generality, we take
30 sets of estimates for analysis. Fig. 5 presents the initial
values of the algorithm, which are different for each run and
have been averaged for presentation, as well as the estimation
results obtained after processing these 30 sets of estimates
using the IQR method. And Fig. 6 shows the boxplots of
RMSEs of these 30 sets of estimates before and after data
processing. The corresponding RMSEs for the signal source
and the sensor array are 0.0864m and 0.0678m, respectively.
The average PLE is 2.9109.

It should be noted that the experimental RMSE values were
observed to be higher compared to the simulated results. This
disparity can be attributed to several factors. For example,
in the actual experiments, the DRSS model’s PLE was not
constant and exhibited significant spatial variations due to the
non-coplanar configuration of the signal source trajectory and
the sensor array. This deviation from the simulated assumption
of a constant PLE model led to increased fluctuations in the
measured DRSS values. Additionally, the presence of noises
in the experiments further impacted the performance of the
calibration algorithm. While we approximated the noise values
in the simulation based on empirical assumptions, the actual
noise magnitude in the experiments remained unknown, con-
tributing to the observed differences between the experimental
and simulated RMSE values.

Despite these challenges, our method shows promise in
calibrating and localizing DRSS sensor arrays. Further investi-
gations and improvements, particularly addressing the varying
PLE and noise factors, are planned as part of future work
to enhance the applicability of our algorithm in complex 3D

scenarios. We also plan to extend the experimental design to
investigate cases with larger sensor array spacing, aiming to
gain a more comprehensive understanding of the relationship
between the calibration error and the size of the sensor array.
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Fig. 4: The RMSEs corresponding to the mean of 8 groups of
estimates

(a) Mean initial value

(b) Estimated results

Fig. 5: Initial values and estimated results

VI. CONCLUSIONS

This paper presents a joint calibration method for DRSS
sensor arrays and source localization using graph SLAM. Our
contributions are twofold: First, we conducted a systematic
observability analysis of the SLAM setup for the calibra-
tion problem using a FIM approach. Second, we proposed
an effective procedure for selecting initial values for LM
iterations to improve optimization accuracy and convergence.
Numerical simulations demonstrate that our method produces
comparable calibration results when compared to scenarios
that use noise-corrupted ground truth values as initial values.
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Fig. 6: Boxplots of RMSEs of 30 sets of estimates before and
after data processing.

Some preliminary real experiments further verify the effec-
tiveness of our algorithm. Future work will aim to enhance
the method’s applicability in more complex 3D scenarios and
reduce the disparities observed between experimental results
and simulations.
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