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Abstract— Adaptive Traffic Signal Control (ATSC) has become
a popular research topic in intelligent transportation systems.
Regional Traffic Signal Control (RTSC) using the Multi-agent
Deep Reinforcement Learning (MADRL) technique has become
a promising approach for ATSC due to its ability to achieve
the optimum trade-off between scalability and optimality. Most
existing RTSC approaches partition a traffic network into several
disjoint regions, followed by applying centralized reinforcement
learning techniques to each region. However, the pursuit of
cooperation among RTSC agents still remains an open issue
and no communication strategy for RTSC agents has been
investigated. In this paper, we propose communication strategies
to capture the correlation of micro-traffic states among lanes
and the correlation of macro-traffic states among intersections.
We first justify that the evolution equation of the RTSC pro-
cess is Markovian via a system of store-and-forward queues.
Next, based on the evolution equation, we propose two GAT-
Aggregated (GA2) communication modules—GA2-Naive and
GA2-Aug to extract both intra-region and inter-region correla-
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tions between macro and micro traffic states. While GA2-Naive
only considers the movements at each intersection, GA2-Aug
also considers the lane-changing behavior of vehicles. Two
proposed communication modules are then aggregated into two
existing novel RTSC frameworks—RegionLight and Regional-
DRL. Experimental results demonstrate that both GA2-Naive
and GA2-Aug effectively improve the performance of existing
RTSC frameworks under both real and synthetic scenarios.
Hyperparameter testing also reveals the robustness and potential
of our communication modules in large-scale traffic networks.

Index Terms— Adaptive regional traffic signal control, coop-
erative multi-agent deep reinforcement learning, communication
strategy.

I. INTRODUCTION

WITH rapid urbanization and population growth in recent
years, traffic congestion is becoming a prominent issue

agitating all participants in the transportation system [1], [2].
The alleviation of traffic congestion brings both economic and
environmental benefits [3], [4], [5]. Motivated by the urgent
need, intelligent transportation systems have been widely stud-
ied to improve transportation efficiency by exploring optimal
traffic flow control and optimal traffic signal control (TSC).
TSC is a promising and cost-efficient approach where the vehi-
cles’ movements at each intersection are managed by traffic
signals [6]. Conventional TSC techniques such as GreenWave
[7] and Maxband [8] focus on rule-based control strategies
which usually cast predefined assumptions on expected travel
speeds or traffic cycle lengths [9]. However, traffic dynamics
in real scenarios are much more complex. Consequently,
conventional TSC techniques have limitations in adapting to
these complicated conditions [10].

The recent rapid development of model-free deep rein-
forcement learning (DRL) techniques, which can adapt to
large high-dimensional states, has demonstrated significant
potential in various research areas, including autonomous
driving [11] and cyber security [12]. The agent of the DRL
technique makes sequential decisions in the Markov deci-
sion process (MDP) through a trial-and-error procedure [13],
[14]. Single-agent reinforcement learning (RL) techniques
have been applied to scenarios involving either one isolated
intersection or several connected intersections [15], [16], [17].
These completely centralized RL techniques exhibit a good
convergence rate in small-scale traffic networks. However,
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as the scale of the traffic networks increases, the growth of
traffic state space and joint action space becomes exponential,
making the search for a joint optimal policy for all signals
computationally impractical [6].

To alleviate the scalability issue of completely central-
ized RL techniques, multi-agent deep reinforcement learning
(MADRL) techniques have been proposed and studied by
numerous researchers [6], [9], [18], [19], [20], [21]. Most
existing MADRL techniques apply completely decentralized
strategies in which one agent is assigned to control one
specific intersection. The optimal joint action for the entire
traffic network is the union of the optimal actions for each
agent. Although the scalability issue in MADRL is alleviated,
the environment becomes non-stationary due to the intricate
interactions between agents [22]. Independent RL (IRL) agents
even face theoretical convergence failure because each agent
maximizes only its own rewards without considering the
impact on other agents [23]. To foster cooperation among
agents, various communication and coordination strategies are
examined. This involves either the exchange of information
between agents or the pursuit of an optimal joint action facil-
itated by coordinators [24], [25], [26]. Nonetheless, certain
cooperative agents fail to converge when the number of agents
becomes substantial [27].

To balance scalability and optimality, regional traffic signal
control (RTSC) is a compromised method typically involv-
ing two stages [28], [29], [30]. The first stage partitions
a large network into several disjoint smaller regions, each
comprising a set of intersections. One straightforward way
is to partition the traffic network into several fixed-shape
regions [29]. However, fixed-shape regions lack adaptability.
The regions in [28] are partitioned by grouping intersections
with internal strong traffic density dynamically and the regions
in [30] are partitioned by only constraining the topology of
each region. After the network is partitioned, a centralized
DRL technique is applied to control each region. While
Regional-DRL (RDRL) [29] and RegionLight [30] continue
to utilize decentralized independent agents, the cooperative
deep reinforcement learning framework (Coder) implements a
decentralized-to-centralized coordinator to estimate the global
Q-value for the entire traffic network [29]. The regional control
methods have successfully converged and identified globally
optimal actions in large-scale traffic networks, managing up to
24 intersections [29] and up to 48 intersections [30]. However,
current regional control methods still exhibit the following
limitations:

• The model-free DRL agent interacts with the environment
through trial-and-error procedures. Thus, modeling the
nature of the environment as one MDP is crucial for the
agent’s convergence and performance. The assumption of
MDP for an isolated intersection was justified in [31]
using a store-and-forward model [32]. If the agent is
assigned to control a region of signals, it has to consider
the interactions among signals either inside the region
(intra-region) or outside the regions (inter-region). How-
ever, the characterization of RTSC as the MDP has not
yet been formally justified.

• The development of cooperative regional signal control
agents still faces a great challenge. One global coordi-
nator is utilized to develop cooperative regional signal
control agents by estimating the global Q-value [29].
However, searching for the optimal joint global action
necessitates multiple rounds of estimations on different
combinations of regional sub-optimal actions, and the
convergence of the global coordinator is not yet guar-
anteed. Unlike coordination strategies, communication
strategies enable agents to exchange specific information,
thereby alleviating non-stationarity. However, no com-
munication strategy between RTSC agents has yet been
studied.

To enhance cooperation among regional control agents,
we first justify that the signal regional control process can
be modeled as a Markov chain through a system of store-and-
forward queueing models. Then, based on the evolution pattern
of the Markov chain, we utilize the graph attention layer(GAT)
to capture the correlations between different regions, consid-
ering both macro and micro traffic states. More specifically,
our main contributions are listed as follows:

1) In traffic networks, vehicles transit between lanes, mov-
ing from one incoming lane to one designated outgoing
lane at each intersection. Once in an outgoing lane,
vehicles can shift to any adjacent lanes. To charac-
terize these traffic flow dynamics, we define both the
movement matrix and the routing proportion matrix.
Subsequently, we formulate the updating equation for
the signal regional control process using a system of
store-and-forward queuing models, and we demonstrate
that the updating equation exhibits the Markov property.

2) Based on the updating equation of the RTSC process,
we further propose two novel communication modules,
GA2-Naive and GA2-Augmented (GA2-Aug) that cap-
ture the correlations of lane-level micro-traffic states
and those of intersection-level macro-traffic states. The
micro-traffic state is the number of vehicles within
each lane segmentation. The macro-traffic state is the
number of moving and waiting vehicles on lanes. Then,
we utilize GAT to aggregate micro and macro traffic
states. More specifically, in Naive-GA2, the micro-traffic
state is aggregated by involving the movement matrix,
and the macro-traffic state is aggregated by involv-
ing adjacency between intersections. Additionally, the
lane-changing behavior of vehicles is involved by using
adjacency between lanes in Augmented-GA2. Finally,
we aggregate two proposed communication modules
with RegionLight and R-DRL frameworks.

3) We evaluate our model on 4 × 4 and 16 × 3 grid
traffic networks with both real and synthetic traffic flows.
Empirical results show that the proposed communication
modules improve the performance of RTSC models.
We further examine the stability of our model by using
different hyper-parameter settings, typically on the num-
ber of multi-attention heads in the GAT and the number
of cells in lane segmentations.

The rest of the paper is organized as follows: Section II
reviews the related work on communication and coordina-
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tion strategies for MADRL-based TSC models. Section III
introduces the background of TSC and MADRL. Section IV
presents the formal justification of the Markov decision pro-
cess (MDP) in the regional signal control process. Section V
describes the communication strategy developed based on
the evolution equation formulated in the previous section.
Section VI outlines the experimental setup and discusses our
findings. Finally, Section VII summarizes the paper.

II. RELATED WORK

In this section, we mainly review the related work on
cooperative MADRL-based TSC models that apply either
communication or coordination strategies. We exclude IRL
methods because they encounter convergence problems due
to the non-stationary issue.

A. Communication Strategy

We review the related work on communication strategies,
focusing primarily on three aspects: who to exchange with,
what information to exchange, and how to exchange it.

One straightforward approach is to augment the observation
of one agent by concatenating it with the observations of its
neighboring agents [33]. In contrast, some studies discrimi-
nate the contributions of neighboring agents by augmenting
observations with weighted values. Zhang et al. extended
Hysteretic DQN (HDQN) [34] to neighborhood cooperative
hysteretic DQN (NC-HDQN) by considering the correlation
between two neighboring intersections [20]. In their work,
the observation of one intersection is concatenated with
the observation of its neighboring intersections, weighted
by correlation degree. They further proposed a rule-based
method, namely empirical NC-HDQN (ENC-HDQN), and a
Pearson-correlation-coefficient-based method, namely Pearson
NC-HDQN (PNC-HDQN). In ENC-HDQN, the correlation
degree is defined based on the number of waiting vehicles
between two intersections with a pre-defined threshold. In con-
trast, PHC-HDQN collects the short-term reward trajectories
for each agent and then applies the Pearson method to compute
the correlations between neighboring intersections.

Instead of concatenating neighboring information directly
to local observation, the following studies encode neighboring
information through neural networks. CoLight utilizes a stack
of GAT to embed the observation of each agent by incor-
porating a dynamically weighted average of the observations
from its neighboring agents [35]. Zhou et al. proposed Multi-
agent Incentive Communication Deep Reinforcement Learning
(MICDRL) to enable agents to create customized messages
[36]. MICDRL utilizes a multivariate Gaussian distribution
(MGD) to infer other agents’ actions based on their local
information. The local Q-value is then combined with the
weighted messages from neighboring agents, which are com-
puted using the MGD. Similarly, Mess-Net was proposed in
Information Exchange Deep Q-Network (IEDQN) to facilitate
information exchange among all agents [37]. In this approach,
the current timestep observation and the previous timestep
Q-value for each agent are first concatenated and embedded
as local information. Then, the local information from all

agents is concatenated and embedded centrally as a message
block. This message block is subsequently divided into several
message vectors, evenly allocated to all agents. Finally, each
agent predicts its Q-value based on its observation and the
corresponding message vector.

To further enhance communication, the following stud-
ies further exchange local policies or historical information.
In [38], the actor-critic agent considers its neighboring agents’
observations and their policies. Spatial-temporal correlations
between agents are considered in NeurComm [39]. At each
time step, the observations, historical hidden states, and
previous timestep policies of the agent and its neighboring
agents are merged and embedded as current hidden states.
The spatiotemporal hidden state is then used to predict the
state value. Zhang et al. proposed the off-policy Nash deep Q-
network (OPNDQN) which utilizes a fictitious play approach
to increase the local agent’s rewards without reducing those
of its neighborhood [26]. The agents in OPNDQN exchange
actions and OPNDQN also facilitates reaching a Nash equi-
librium. The agents in [18] exchange information with their
neighboring agents by determining the corresponding dis-
tances and utilizing mix-encoders to aggregate messages.

B. Coordination Strategy

Apart from communication strategies, many researchers
have studied the nature of the interactions between agents and
proposed various coordination strategies to choose global joint
action. Some studies assume the global Q-value of joint action
is the sum of the Q-value of each local action. The max-
plus algorithm and transfer planning are applied to optimize
the joint global action based on factorized global Q-value
[40]. Lee et al. proposed a more straightforward method for
computing the global Q-value [41]. In their approach, the
Q-values of all possible joint actions are first calculated by
summing all local Q-values. The optimal joint action is then
identified as the one with the highest global Q-value.

Another common strategy is to utilize one parameter-
ized global coordinator to evaluate the global Q-value for
global joint action, allowing for more flexible assumptions.
Li et al. proposed an Adaptive Multi-agent Deep Mixed
Reinforcement Learning (AMDMRL) model using a mixed
state-action value function inspired by QMIX [18], [42].
The mixed state-action value assumes all agents contribute
positively to the global Q-value, implying that there is no com-
petition between these agents. Cooperative deep reinforcement
learning (Coder) is proposed to take the last hidden layers of
all agents and predict the global Q-value without the above
assumptions [29]. Meanwhile, the Coder initially collects
several local sub-optimal actions proposed by agents and then
estimates the global Q-values of different combinations of
these proposed actions through an Iterative Action Search
process.

III. PRELIMINARIES

A. TSC

A traffic network is defined as a directed graph G = (V, E)

where v ∈ V represents an intersection and evu = (v, u) ∈ E
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Fig. 1. Isolated intersection and phase configuration.

TABLE I
NOTION TABLE

represents the adjacency between two intersections and an
approach connects two intersections (Fig. 1). Among all
intersections V = {Vinternal ∪ Vexternal}, Vinternal stands for
the intersection whose traffic signals are considered to be
controlled and Vexternal can be seen as sinks or sources of
traffic flows. Approaches are further categorized into three
types based on the type of the starting and ending intersections.
If the starting intersection is external, then the approach is an
entry approach in Eentr y . If the ending intersection is external,
then the approach is an exit approach in Eexi t . If both the
starting and ending intersections are internal, then the approach
is an internal approach in Einternal . The neighborhood of
intersection v is denoted as N Bv = {u|(v, u) ∈ Einternal}.

An approach evu serves as the incoming route where vehi-
cles enter intersection u and as the outgoing route where
vehicles exit intersection v. Each approach e includes multiple
lanes, referred to as L[e]. All lanes on the same approach are
adjacent lanes. Then, we have incoming and outgoing lanes
corresponding to different approaches. I nv denotes the set of
incoming lanes of intersection v and Outv denotes the set of
outgoing lanes of intersection v. Then, all incoming lanes of
the traffic network is Lin = ∪v∈Vinternal I nv .

A traffic movement (l, m) at intersection v is defined as
a pair of one incoming lane l ∈ I nv and one outgoing
lane m ∈ Outv . A phase is a set of permitted or restricted
traffic movements. As illustrated right side in Fig. 1, one
intersection has four phases which are North-South Straight
(NS), North-South Left-turn (NSL), East-West Straight (EW),
and East-West Left-turn (EWL); right-turn movements are
always permitted.

B. Markov Grame Framework and Q-Learning

The multi-agent reinforcement learning problem is typi-
cally modeled as a Markov Game (MG) [43], defined as

a tuple⟨N ,S,O,A, R, P, γ ⟩ where N represents the set of
agents, S denotes the state space, O = {O1, . . . ,O|N |}

denotes the space of local observations for each individual
agent i and each local observation is generated partially from
S, A = {A1, . . . ,A|N |} denotes the set of joint action space.
The local reward function Ri ∈ R : O × A → R maps a
pair of observation and joint action to a real number. The
transition probability P : S × A × S → [0, 1] assigns a
probability to each state-joint action-state transition. γ denotes
the reward discounted factor which manages the trade-off
between immediate and future rewards.

Each agent i in MG has its own policy πi : Oi ×Ai → [0, 1]

indicating the probability distribution of its action over the
observation of agent i . Each agent tries to maximize its own
expected cumulative reward, i.e., the state value function

V (oi ) = Eπi [

∞∑
k=0

γ kri,t+k |oi,t = oi ] (1)

and the Q-value function

Q(oi , ai ) = Eπi [

∞∑
k=0

γ kri,t+k |oi,t = oi , ai,t = ai )] (2)

Traditional tabular Q-learning method stores Q-value in a
table [44]. However, for some complicated problems with
large state space and action space, tabular Q-learning becomes
computationally impractical. Deep Q-network (DQN) utilizes
a neural network to approximate Q-value and utilizes gradient
descent to update the parameters [14]. The loss function for
DQN is

L(θi ) = E(oi,t ,ai,t ,rit ,oi,t+1)∼D[(yi,t − Q(oi,t , ai,t ; θi ))
2
] (3)

where

yi,t = ri,t + γ max
a′

Q(oi,t+1, a′
; θ−

i ) (4)

θi denotes the parameter of DQN, θ−

i denotes the parameter
of the target DQN and D is the experience buffer.

C. GAT

The GAT was proposed to capture hidden features for data
in the forms of graphs [45]. The input of the single-head GAT
is a set of features with nodal structure, h = {h1, h2, . . . , hN },
hi ∈ RF , where N is the number of nodes and F is the number
of features in each node. The output of the layer is a set of node
features, h′

= {h′

1, h′

2, . . . , h′

N }, h′

i ∈ RF ′

. The first step is to
compute the correlated importance coefficients E ∈ RN×N

between nodes by embedding the input features into a higher
dimension using a shared weight matrix W ∈ RF ′

×F followed
by a self-attention mechanism, i.e.,

ei j = LeakyReLU(aT
[Whi ||Wh j ]) (5)

where a ∈ R2F ′

and || is the concatenation operation. Next,
a masked attention mechanism is applied to allow each node
only to consider the importance coefficients among its neigh-
boring nodes. The selected importance coefficients are then
normalized by the softmax function

α = exp(E) ⊘ (exp(E) · M) (6)
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where ⊘ is the element-wise division operation between
matrices and M is the adjacent matrix of these nodes, i.e.,

Mi j =

{
1 i and j are neighbourhoods
0 otherwise.

(7)

Once we have normalized importance coefficients, the final
hidden feature of each node is a weighted linear combination
of the embedded features of its neighboring nodes, i.e.,

h′

i =

∑
j∈Ni

αi j Wh j (8)

where Ni is the neighborhood of node i . However, the
single-head GAT could be unstable in certain circumstances.
Therefore, the multi-head GAT is introduced to stabilize the
learning process. Compared to single-head attention, multi-
head attention applies K independent attention mechanism
with K independent pairs of ak and Wk involved. The input
of the multi-head attention layer remains unchanged while the
output of that is a concatenation of each single-head attention’s
results, i.e.,

h′

i = ∥
K
k=1

∑
j∈Ni

αk
i j W

kh j (9)

and h′

i ∈ RK F ′

. To conclude, the whole process of the
multi-head attention layer is denoted as

h′
= GAT(h, M) (10)

where M is the neighborhood matrix for mask attention

IV. MARKOVIAN PROPERTY OF RL-BASED REGIONAL
TRAFFIC SIGNAL CONTROL PROCESS

A store-and-forward queueing network model is proposed to
model the transition of the state of a single intersection and is
used to prove such transition satisfies the property of Markov
chain [31], [32]. We first revisit the single intersection queue-
ing network model by specifying lane-to-lane movements and
adjacency lanes. Then, we extend the queueing network model
to a group of intersections.

A. Single Traffic Signal Control Modeling

For internal intersection v ∈ Vinternal and its incoming lane
l, the number of vehicles leaving l to an outgoing lane m at the
beginning of period t is denoted as x t (l, m). In Fig. 1, when
a vehicle passes the intersection, it moves from an incoming
lane to one unique downstream lane, establishing a one-to-
one mapping for movement (l, m) has a unique one-to-one
mapping relationship. Therefore, for simplicity, we omit m in
x t (l, m) in the remaining parts. Two variables independent of
x t (l) are defined as follows:

• Routing proportion r t (l, l ′): After a vehicle enters an
incoming lane, it can either stay or change to an adjacent
lane for the next movement. Therefore, for an incoming
lane l, a non-negative i.i.d random variable r(l, l ′) denotes
the proportion of the entering vehicles that move to lane
l ′ from lane l. The sum of routing proportion from l to
all lanes on approach e which l belongs to is 1, i.e.,∑

l ′ r t (l, l ′) = 1.

• Discharging rate ct (l, m): For each movement (l, m),
a non-negative i.i.d random variable ct (l, m) denotes the
queue discharging rate and is bounded by saturation flow
rate.

The transition of x(l) in period (t, t + 1) involves both
entering and leaving vehicles. Entered vehicles are contributed
directly by vehicles of the movements from the upstream inter-
sections or by vehicles moved from adjacent lanes. Leaving
vehicles will move to lane m if movement (l, m) is permitted,
i.e., a(l) = 1. The queue update equation for an internal lane
l on one internal approach e is formulated as follows:

x t+1(l) = x t (l) (11)

+

∑
l ′∈Lane[e]

min{ct (k′, l ′) · at (k′), x t (k′, l ′)} · r(l ′, l) (12)

− min{ct+1(l, m) · at (l), x t (l)} · 1(wave(m)≤wavemax (m))

(13)

where wave(m) is the current number of vehicles on lane
m and wavemax (m) is the capacity of lane m. The second
term (Eq. 12) represents the movements of vehicles expected
to enter lane l. For each lane l ′ including lane l on incoming
approach e, there are up to c(k′, l ′) vehicles enter if at (k′) = 1.
Then, the proportion r(l ′, l) of vehicles will finally move to
lane l. The third term (Eq. 13) represents the movements of
vehicles expected to leave lanel where two conditions must be
satisfied. The first condition is that the signal allows the vehicle
to pass through the intersection which is at (l) = 1 and the
second condition is its downstream lane must have the capacity
to take the vehicles which is wave(m) ≤ wavemax (m).

Similarly, the queue update equation for the entry lane
whose upstream intersection is outside of the network is
formulated as follows

x t+1(l) = x t (l) + d t+1(l) (14)

− min{ct+1(l) · at (l), x t (l)} · 1(wave(m) ≤ wavemax (m))

(15)

where d t (l) is the demanding flow from intersection v ∈

Vexternal .
Since the RL agent generates signal action a and the policy

of actions is dependent on state x , the queue update equation
only depends on state x , and the process X (t) is a Markov
chain.

B. Regional Traffic Signal Control Modeling

Based on the single intersection evolution model, we now
extend the model for a group of intersections and justify that
the process of traffic movements under a group of intersections
is still a Markov chain.

Suppose one region is composed of a group of intersections
W ⊂ Vinternal , other intersections are either external intersec-
tions or ones with pre-defined behaviors. The incoming and
outgoing lanes of these intersections are denoted as Fin =

∪v∈W I nv and Fout = ∪v∈WOutv respectively. The state of
these intersections is stored in a vector X (Fin) ∈ R|Fin |.
C(Fin) ∈ R|Fin | is a vector of discharging rate of all lanes
in Fin . A(Fin) ∈ R|Fin | denotes the signal control phase of
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Fig. 2. An arbitrary traffic network with external intersections (cycles with dash line) and internal intersections (cycles with solid line). Intersections of the
current region W are filled with yellow and intersections outside the current region are filled with gray. Intersections that are not adjacent to W are omitted
for simplicity. Red arrows in (b), (c), and (d) describe specific interactions in three scenarios.

all incoming lanes inside the region. al = 1 if the signal of
lane l is green and al = 0 otherwise.

Definition 1 (Movement Matrix): Movement matrix
M(F1,F2) ∈ R|F1|×|F2| between two sets of lanes describes
the movements between two sets of lanes F1 and F2 where

m(k, l) =

{
1 (k, l) is a valid movement
0 otherwise

(16)

Definition 2 (Routing Proportion Matrix): Routing propor-
tion matrix RP(F1,F2) ∈ R|F1|×|F2| between two sets of
lanes describes the route proportion between two sets of lanes
F1 and F2 where

r p(l, l ′) =

{
[0, 1] l, l ′ are adjacent
0 otherwise

(17)

and ∑
l ′∈F2

r p(l, l ′) = 1 (18)

Definition 3 (Blockage Matrix): Blockage matrix
BM(F1,F2) between two sets of lanes describes whether
the number of vehicles on the downstream lane reaches the
lane’s capacity where

bm(k, l) =


1 (l, k) is a movement

and wave(k) ≤ wavemax (k)

0 otherwise.
(19)

If the capacity is reached, then there is a blockage on the
downstream lane and no vehicle can leave from the upstream
lanes.

The queue updating equation for a region involves move-
ments between intra-region intersections, movements between
inter-region intersections, and movements from external inter-
sections, i.e.,

X t+1(Fin) = X t (Fin) + I ntrat
+ I nter t

+ External t

(20)

1) Intra-Region: I ntrat represents the traffic movement
caused by the traffic signals inside the region at time t
(Fig. 2(b)).

I ntrat
= X̂ t (Fin) · M̂(Fin,Fin) (21)

− X̂ t (Fin) · BM(Fin,Fout ) (22)

= X̂ t (Fin) · (M̂(Fin,Fin) − BM(Fin,Fout )) (23)

where

X̂ t (Fin) = min{C(Fin) ◦ At (Fin), X t (Fin)} (24)

describes the number of vehicles that are about to leave each
lane due to the signal, min denotes the operation of taking
element-wise minimum between two vectors, ◦ denotes the
operation of element-wise multiplication between two vectors,
and

M̂(F1,F2) = M(F1,F2) · RPt (F2,F2) (25)

assigns the vehicles from incoming lanes inside the region to
themselves.

2) Inter-Region: I nter t describes the traffic movements
caused by the traffic signal outside the region at time t
(Fig. 2(c)). We use W ′

= ∪v∈WN Bv−W to denote the neigh-
bouring intersections outside the region. Then, the number of
vehicles coming from outside of the region is denoted as

I nter t
= X̂ t (F ′

in) · (M̂(F ′

in,Fin) − BM(F ′

in,Fin)). (26)

3) External Entry Lane: Among all incoming lanes in Fin ,
some lanes might belong to Eexternal which originate from
sources (Fig. 2.(d)). Therefore, the last part External t

∈

R|Fin | represents the vehicles from sources where

External t
[l] =

{
dl if l originates from sources
0 otherwise.

(27)

Then, the queue updating equation of X t+1(Fin) only depends
on previous state X t (Fin). Therefore, the process of regional
traffic signal control is also a Markov chain.

V. GAT-BASED COMMUNICATION TECHNIQUE ON
LANE-LEVEL AND INTERSECTION-LEVEL TRAFFIC STATES

In the queue updating equation of the RTSC process, the
transition involves both intra-region and inter-region traffic
flows. However, the transition will become non-stationary if
we apply multiple RTSC agents in a large traffic network.
Then, the control problem turns out to be a partially observable
Markov decision process (POMDP) since the intersections
outside the region are controlled by other agents. To allevi-
ate the issue caused by a partially observable environment,
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Fig. 3. The architecture of proposed information sharing module. Macro and micro state inputs of the whole traffic network are first centralizedly embedded
by stacked GATs and two stacks of GATs do not share weights. Then, the macro and micro hidden features are regrouped and concatenated as the observation
of each regional agent according to the region configurations respectively. Next, each decentralized agent predicts the best action based on its observations.
Finally, the union of the best actions of all agents is the optimal global control strategy for the whole traffic network.

Fig. 4. Overall Framework. Our framework contains three components: sim-
ulator, agent and memory. The simulator will simulate the traffic environment
and offer traffic states for agents. Then, agents will make decisions based
on traffic states through three stages. First, the centralized communication
stage will process network-level traffic state to enable RTSC agents to share
information. Then, hidden features will be regrouped and flattened for each
region in the feature regrouping stage. Finally, in the decentralized control
stage, RTSC agents will choose the actions for their regions in a decentralized
manner. The memory component will store the recent transition tuples for
future training.

we propose a centralized communication module that applies
GAT to capture correlations in both macro traffic states among
intersections and micro traffic states among lanes. The overall
framework of our work is illustrated in Fig 4 and the archi-
tecture of the proposed communication module is illustrated
in Fig. 3. The traffic state of the entire traffic network is first
embedded in a centralized manner. Then, the embedded state
is split and regrouped as the observation for each RTSC agent
and each RTSC agent makes decisions based on its individual
observations.

In this section, we first present the formulation of our
communication module with two variants and then describe
how this module can be aggregated with RegionLight [30]
and RDRL [29].

A. Lane-Level GAT

We segment each incoming lane into B cells, and the num-
ber of vehicles traveling inside each cell is observed (Fig. 5).

Fig. 5. Example of Lane Segmentation. Suppose we have an incoming road
with three lanes and each lane is segmented into three cells. Then the lane
level state of these incoming lanes is {[1, 3, 2], [2, 2, 0], [2, 0, 2]}.

Then the input to the lane-level state embedding module is
the set of all segmented incoming lanes and is denoted as
Slane

= {Slane
[l], . . . , Slane

[m]} ∈ R|Lin |×B , where Slane
[l] ∈

RB and l, m ∈ Lin . Then, inspired by [46], we propose two
movement matrices to describe the neighborhood relationship
between lanes and stack several GATs to embed the lane-level
states.

1) Naive Movement Matrix: Based on the Def. 1, vehicles
move from one incoming lane to one outgoing lane. Therefore,
a correlation exists between the pair of lanes in any valid
movement. We propose a naive movement matrix M lane

naive ∈

R|Lin |×|Lin | to capture the correlation of both upstream and
downstream flow, i.e.,

M lane
naive(Lin,Lin) = M(Lin,Lin) + MT (Lin,Lin) + I|Lin |

(28)

where I|Lin | is the identical matrix of dimension |Lin|.
2) Augmented Movement Matrix: The naive movement

matrix considers only the traffic movements caused by vehicles
passing the intersection. However, in Eq. (25), a vehicle might
move to one adjacent lane after it enters one outgoing lane.
Therefore, the naive movement matrix fails to consider the
lane-changing behaviors of vehicles. Hence, we propose an
augmented movement matrix M lane

aug to capture the correlation
between adjacent lanes more comprehensively, i.e.,

M lane
aug (Lin,Lin) = M lane

naive(Lin,Lin) + AD J (Lin,Lin) (29)
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where AD J (Lin,Lin) is the adjacent matrix between lanes,
i.e.,

ad j (l, l ′) =

{
1 l and l ′ are adjacent lanes
0 otherwise.

(30)

With the help of AD J (Lin,Lin), the GATs also compute the
importance coefficients between adjacent lanes and consider
the evolution between adjacent lanes caused by lane-changing
behaviors.

Although we assume each incoming lane has only one
outgoing lane, these two movement matrices can be extended
to traffic networks where one incoming lane has multiple
outgoing lanes. One example scenario is that one lane supports
both straight and left turns. In such a scenario, the above
modelling and computation are still valid once the movement
matrix is well-defined to capture both movements. As for the
routing proportion matrix, it is a part of the environment and
is not observable to the agents.

Next, the architecture for lane-level state embedding is listed
as follows

hlane
1 = GAT(Slane, M lane) (31)

hlane
2 = GAT(hlane

1 , M lane) (32)
. . . (33)

hlane
m = GAT(hlane

m−1, M lane) (34)

where M lane denotes the mask attention matrix between lanes.

B. Intersection-Level GAT

The input to the intersection-level state embedding module
is a summarised information of each internal intersection v ∈

Vinternal and is denoted as Si tsx
= {Si tsx

[v], . . . , Si tsx
[u]} ∈

R|Vinternal |×2|I nv | where

Si tsx
[v] = {{wait (l)}l∈I nv , {wave(l)}l∈I nv } (35)

and wait (l) is the number of waiting vehicles on lane l. Note
that, if the number of cells in the lane-level state is set to 1,
then the lane-level state is equivalent to the wave on each lane.

Similar to previous work [35], we use the adjacent matrix
between intersections as the masked attention matrix in GAT,
i.e.,

hi tsx
1 = GAT(Si tsx , M i tsx ) (36)

hi tsx
2 = GAT(hi tsx

1 , M i tsx ) (37)
. . . (38)

hi tsx
m = GAT(hi tsx

m−1, M i tsx ) (39)

where M i tsx is the adjacent matrix between intersections
and mi tsx (v, u) = 1 if (v, u) ∈ Einternal ; mi tsx (v, u) =

0 otherwise.

C. Intersection Grouping and Observation Construction

The hidden features of lane-level and intersection-level
traffic states are then regrouped according to the configuration
of each region. Each region Wi is a set of intersections that
obeys the following two constraints:

∪iWi = Vinternal (40)

Wi ∩W j = ∅,∀i ̸= j (41)

where the first constraint ensures all regions cover all internal
intersections and the second constraint ensures all regions
are disjoint. In this paper, we follow the constrained network
partition rule proposed in [30] to construct the configuration of
each region but with the dummy intersection removed. Then,
each region Wi contains at least one internal intersection v

and a subset of the neighborhoods of v, i.e., W = {{v} ∪ U }

where U ⊂ N Bv .
Remark 1: One GAT embeds each node feature with its

neighborhood. With more stacked GAT, each hidden node
feature is embedded in more nodes. Since the diame-
ter of each region is at most 2, we set the number of
stacked GAT to 2, i.e., m = 2 in Eq.(34) and (39).
Hence, the complexity analysis of both modules can be
analyzed. For lane-level GAT, the computational complexity
for single-head is O(|Lin||hlane

1 [l]||hlane
2 [l]| + |g||hlane

2 [l]|)
where g denotes the number of one in M lane

naive(Lin,Lin) or
M lane

aug (Lin,Lin) For intersection-level GAT, the computational
complexity for single-head is O(|Vinternal ||Si tsx

[v]||hi tsx
2 [v]|+

|Einternal ||hi tsx
2 [v]|). Although we apply multi-head GAT,

multi-head computation is independent and can be paral-
lelized.

Next, the hidden features hlane
m and hi tsx

m are regrouped and
concatenated as the observation feature for regional control
agents, i.e.,

Oi = {{hlane
m [l]}l∈I nv , hi tsx

m [v]}v∈Wi (42)

where {hlane
m [l]}l∈I nv represents the hidden micro traffic state

for all incoming lanes to the region and {hi tsx
m [v]}v∈Wi rep-

resents the hidden macro traffic state for all intersections in
the region. Note that in different networks, the number of
intersections in different regions can be different, indicating
that the dimensions of observation for each agent can differ.
Therefore, two possible strategies can be applied. One naive
strategy is to model each agent specifically according to the
exact configuration of each region which indicates that agents
do not share parameters of their networks. The other strategy
is to follow the modeling in [30] which is to fix the maximum
number of intersections inside one region and the maximum
number of lanes one intersection can have, followed by using
dummy intersections to fill the absence.

D. Action Space and Reward Function

As defined in Fig. 1, each intersection has four phases:
North-South through (NS), East-West through (EW), North-
South left-turn, and East-West left-turn (EWL). Therefore, the
joint action space for each region is denoted as

Ai = {N S, N SL , EW, EW L}
|Wi |. (43)

The ultimate goal for TSC is to reduce the average travel time
of all vehicles. However, this delayed metric is not directly
applicable to the DRL problem, as agents need immediate
rewards to optimize performance. The reward function of each
agent is the negative sum of the number of waiting vehicles
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on all incoming lanes inside the region, i.e.,

Rt
i = −

∑
v∈Wi

∑
l∈I nv

wait t (l) (44)

same as the reward function in previous work [20], [30], [47].

E. Centralized Experience Buffer and ϵ-Greedy Policy

In common MADRL training, previous transition tuples
are sampled from its experiment randomly and are used by
agents to update parameters independently. However, given
that the proposed communication modules embed macro and
micro traffic states in a centralized manner, this independent
sampling technique can lead to stability issues. To address the
issues and ensure that our communication modules effectively
capture the correlation between traffic states, we store the
experiences of all agents in a centralized experience buffer.
Sampling experiences from this centralized buffer will main-
tain the underlying traffic dynamics between intersections
while facilitating information exchange.

To achieve a trade-off between exploration and exploitation,
agents follow ϵ-greedy policy [44], i.e.,

π(s) =

{
Random Action with probability ϵ

argmaxa∈A Q(s, a) with probability 1 − ϵ.

(45)

The value of ϵ starts from ϵmax close to 1 and decays to ϵmin
in certain steps.

VI. EXPERIMENT AND RESULT

In this section, we examine the performance of our
communication modules when applied to RegionLight
and RDRL, specifically GA2-RegionLight(Naive),
GA2-RegionLight(Aug), GA2-RDRL(Naive), and GA2-
RDRL(Aug). These four aggregated models are deployed
in both real and synthetic traffic scenarios. We compare
their performance against other baseline models and present
the improvements observed across all regions. Additionally,
to assess the robustness and stability of our communication
modules, we test various sets of hyperparameters.

A. Experiment Settings

In our experiment, we utilized three grid traffic networks
which are Hangzhou (4 × 4), synthetic (4 × 4), and New
York (16 × 3). The illustrations of two real traffic net-
works (Hangzhou and New York) are shown in Fig.6. In the
Hangzhou grid, we applied both a flat traffic flow and a
peak traffic flow. The volumes of these two traffic flows were
collected from camera data in Hangzhou city, while the turning
ratios were synthesized from taxi GPS data statistics. In the
Hangzhou scenarios, the average turning ratios for vehicles are
distributed as follows: 10% turning left, 60% going straight,
and 30% turning right but the exact turning ratios at different
intersections are not identical. Similarly, the traffic flow for
the New York scenario is sampled from taxi trajectory data.
The traffic flow for the synthetic scenario is sampled from a
Gaussian distribution with a mean of 500 vehicles/hour/lane.

Fig. 6. Traffic Grid Network for Hangzhou and New York scenarios.
Intersections are annotated by dots. Dots with solid borders indicate internal
intersections while dots with dashed borders indicate external intersections.
Additionally, we use different colors to distinguish different regions. For
example, the 4 Hangzhou network is partitioned into 4 regions, and the 16
New York network is partitioned into 13 regions.

TABLE II
THE CONFIGURATION OF SCENARIOS

The datasets are open-source1 and some statistical information
is listed in Table II.

An open-source traffic simulator CityFlow [48] is selected
to simulate the above scenarios. For each scenario, we simulate
4000 time steps, with each time step representing one second
in the real world. The agent selects one action every 20 time
steps. An all-red phase, lasting 3 time steps, is inserted
between two different phases to clear the intersection and
ensure safety. The length of each episode is 200.

B. Baseline Model and Hyperparameter

We choose both conventional TSC methods and RL methods
as baselines.

Conventional TSC methods:
• Fixed time: Fixed time is a classic TSC method

that switches traffic signal phases according to a
predetermined schedule and is not influenced by real-time
traffic conditions.

1https://traffic-signal-control.github.io/#open-datasets
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• Self-organizing traffic lights (SOTL) [49]: SOTL consid-
ers real-time traffic demands of all phases. The switch
will be approved if the number of approaching vehicles
in the current phase reaches a threshold.

Below RL methods first collect the experience of each entire
episode and then perform learning after the episode terminates:

• CoLight2: The state of CoLight consists of a one-hot
vector of the current phase and the number of vehicles
on each incoming lane. The reward for each intersection
is the sum of all waiting vehicles on all incoming lanes.

• Efficient-PressLight3 [50]: Efficient Pressure extends the
original computation of pressure presented in [32] by
considering lane-changing behaviors on outgoing lanes.
This modified pressure calculation is then used as the
reward function.

• Efficient-CoLight [50]: Similar to Efficient-PressLight,
this method uses efficient pressure as the reward function.

Below RL methods learn from existing data during the
interaction with the environment:

• ENC-HDQN4: ENC-HDQN assumes that if two intersec-
tions are positively correlated to the number of vehicles
between two intersections. Then, an empirical threshold
is defined to divide the correlation into three categories.

• PNC-HDQN: PNC-HDQN stores synchronous reward
trajectories for all agents. Then, the correlation degree is
computed using Pearson coefficient of these trajectories.

• R-DRL: R-DRL applies deep deterministic policy gradi-
ent [51] to predict proto-action and then use Wolpertinger
Architecture [52] to map continuous actions to candidate
discrete actions.

• RegionLight5: Extended from the Branching Dueling
Q-network (BDQ) [53], Adaptive-BDQ (ADBQ) is pro-
posed to mitigate the negative effects of fictitious
intersections introduced during network partitioning.
Unlike R-DRL, ADBQ directly predicts discrete actions
for each region.

To ensure fairness, we run the source code of baselines
and the code of the proposed method is open-sourced.6 The
hyperparameters of the RegionLight and R-DRL follow the
original paper [30], [54], and the hyperparameters for our GA2
module and experiment are listed in Table III.

C. General Results

Similar to previous works, the performance of TSC tech-
niques is evaluated based on the average travel time of all
vehicles. The numerical results of the average travel time for
all models are listed in Table IV and the best results are
marked with red color. From Table IV, all MADRL-based
models converge in 4 × 4 networks, while some models fail
to converge in the 16 × 3 network, with the corresponding
results omitted in Table IV. In general, the average travel
time of MADRL-based models is better than that of Rule-
based methods. Among MADRL-based models, the standard

2https://github.com/wingsweihua/colight
3https://github.com/LiangZhang1996/Efficient_XLight
4https://github.com/RL-DLMU/PNC-HDQN
5https://github.com/HankangGu/RegionLight
6https://github.com/HankangGu/GA2NaiveAug

TABLE III
HYPERPARAMETER CONFIGURATION

deviation of average travel time across different episodes is
higher in offline models because learning occurs after the
entire simulation episode is completed. Unlike offline models,
online models learn during the simulation, allowing them to
adjust their policies in real-time based on previous experi-
ences. Among all baselines, although RegionLight deploys the
independent RL agents, it achieves the best average travel time
in most scenarios except for HangzhouFlat.

After the two regional signal control models are aggregated
with the proposed communication module, the average travel
time decreases in all scenarios. Compared to RegionLight
among all scenarios, GA2-RegionLight(Naive) improves the
average travel time by approximately 5 seconds, while GA2-
RegionLight(Aug) improves the average travel time by about
7 seconds. In the Synthetic scenario, the performance of
GA2-RegionLight(Naive) is worse than that of RegionLight
but the augmented movement matrix fixed this issue. The
number of traveling vehicles is significantly higher in the
Synthetic scenario compared to other scenarios. Consequently,
more frequent lane-changing behaviors occur in this scenario,
and the naive movement matrix probably fails to capture
the correlation between these behaviors since it ignores the
lane-changing behaviors of vehicles. Compared to RDRL
among all scenarios, the average travel time decreased by
about 6% with GA2-Naive and decreased by about 8% with
GA2-Aug.

D. Regional Reward Improvement

The previous section evaluates the overall performance
of the models using average travel time and the proposed
communication modules improve the performance of existing
RTSC models. This section demonstrates the improvements
in reward scores of each region after the GA2 communi-
cation module is aggregated with RTSC models. The ratio
of reward score improvement is depicted in Fig. 7 and
the performance will be compared through each scenario.
In the Hangzhou(Flat) scenario, reward scores are improved
across all regions, and the improvement for RDRL is more
significant than that for RegionLight. The majority of improve-
ments are in Region 1,2,3 for GA2-RegionLight(Naive) and
GA2-RegionLight(Aug). However, GA2-RDRL(Naive) and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Southeast University. Downloaded on May 30,2025 at 11:55:33 UTC from IEEE Xplore.  Restrictions apply. 



GU et al.: COMMUNICATION STRATEGY ON MACRO-AND-MICRO TRAFFIC STATE IN COOPERATIVE DRL 11

TABLE IV
AVERAGE TRAVEL TIME IN TESTING SCENARIOS

Fig. 7. Reward score improvement in regions.

GA2-RDRL(Aug) achieve more improvements in Region
4 than RegionLight(Naive) and GA2-RegionLight(Aug). The
overall improvement for GA2-RDRL(Naive) is slightly higher
than that of GA2-RDRL(Aug). In the Hangzhou (Peak)
scenario with more traffic flows, the most significant improve-
ments in reward scores are observed in Region 2. In the
Synthetic scenario, although the performance of models is
generally better than the original models, the reward scores
of some regions decreased for RDRL. The reward scores of
GA2-RDRL(Naive) decrease 7% in Region 1 but increase
significantly in other regions. In the New York scenario, the
reward scores of Region 11 decrease across all models, and
those of Region 7 decrease across most models except GA2-
RDRL(Aug).

Although the communication modules improve the overall
performance, the benefits are not shared among all agents.
This indicates that the agents face a fairness issue. Due
to the natural interactions between agents, the decrease in
the queue length for one intersection is probably causing
an increase in the queue length of its neighboring agents.
Hence, the problem is mixed with cooperative and competitive
interactions. Meanwhile, our communication modules only

enable agents to exchange information while the objective of
agents still focuses on individual rewards. Without an explicit
coordination strategy, the rewards of some agents are possible
to be sacrificed.

E. Impact of Cell Number and Multi-Head Number

Two crucial hyperparameters are involved in the pro-
posed communication modules. The first is the number of
multi-heads in the GAT introduced in Section III-C, and the
second is the number of cells introduced in Section V-A.
In this section, we examine the impact of different numbers
of headers in GAT and different numbers of cells when
constructing micro traffic states. Note that the default number
of cells is 5 and the default number of multi-head is 8 which
are listed in Table III and tested in previous sections.

Fig. 8 illustrates the average travel time of all scenarios
when varying multi-head numbers from 5 to 9. We can observe
that the performance of GA2-RegionLight(Naive) and GA2-
RegionLight(Aug) remained stable under different numbers of
multi-heads. The performance of GA2-RegionLight(Aug) con-
sistently outperformed GA2-RegionLight(Naive) except when
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Fig. 8. Robustness test on different values of multi-head number.

Fig. 9. Robustness test on different values of cell number.

the number of multi-heads is 6 in Hangzhou(Flat) scenario.
However, the performance of GA2-RDRL(Naive) and GA2-
RDRL(Aug) showed less stability, and more instances of
tangling were observed between the curves of these two
models, especially in the New York scenario.

Fig. 9 illustrates the average travel time of all scenarios
when varying the number of cells from 1 to 10. Note that
when the number of cells is 1, then the micro traffic state
is equivalent to the wave defined in Eq. 13. With larger
cell numbers, the micro-traffic state should provide more
information on different intervals on each lane. Therefore,
the model has the potential to capture more useful hidden
correlations. From Fig. 9, the performance when the cell
number is 1 in all scenarios is the worst. When the number of
cells increases, the performance improves. However, as the
number of cells increases above 5, there is no significant
improvement in all scenarios. For GA2-RegionLight models,
both Naive and Augmented variants are highly stable across
changes in the number of cells. Fluctuations in performance
are minimal, indicating that these models are less sensitive to
hyperparameter variations. However, the performance stability
of GA2-RDRL is less robust compared to GA2-RegionLight.
There are noticeable oscillations in performance, particularly
in the New York scenario when varying the number of
cells. Although there are oscillations in all models across all
scenarios, the performance is still better than the baselines,
given that the number of cells is moderate.

VII. CONCLUSION

In this paper, to enhance the communication and coopera-
tion between RTSC agents, we first justify that the updating
equation of the RTSC process is a Markovian chain by using
a system of store-and-forward queues. We then propose a
novel communication module for RTSC models based on the
updating equation. Our communication module leverages GAT
to capture correlations between both macro and micro traffic
states. The adjacent matrix of intersection is used to embed

the macro traffic state. Two movement matrices are proposed
to embed micro traffic states constructed by segmenting each
lane into several cells. The naive Movement matrix only con-
siders the movement at each intersection while the augmented
movement matrix also considers the lane-changing behavior
of vehicles on each approach.

To evaluate the proposed module, we aggregate it with two
existing RTSC models. The numerical results show the aggre-
gated models outperform baseline models and demonstrate
the efficacy of our communication module in both real and
synthetic scenarios. The reward scores of all regions for the
aggregated models achieve improvements in the Hangzhou
scenarios. Interestingly, in the synthetic and New York sce-
narios, the rewards of some agents are sacrificed to achieve
better global performance. We also explored different settings
for the number of cells and multi-heads in GAT by observing
their impact on performance. However, our work still has two
limitations. First, although agents share information through
GA2 modules, no explicit coordination strategy is applied
to guide agents’ decisions. Hence, a fairness issue appears.
Second is that the roadnets in our experiments are all grid
roadnets. The performance of our model in more complex
roadnets still remains to be explored.

In the future, we plan to investigate more aggregation
techniques to capture the correlations between lane-level and
intersection-level traffic states. We also plan to study the
coordination strategy for RTSC models and decentralized
communication strategies. Meanwhile, addressing the fairness
issue among MADRL agents is also our focus. With the
updating equation justified in this paper, model-based MADRL
techniques are also a promising topic for further research.
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