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Heterogeneous Dual-Attentional Network for WiFi
and Video-Fused Multi-Modal Crowd Counting

Lifei Hao , Baoqi Huang , Senior Member, IEEE, Bing Jia , Member, IEEE, and Guoqiang Mao , Fellow, IEEE

Abstract—Crowd counting aims to estimate the number of indi-
viduals in targeted areas. However, mainstream vision-based meth-
ods suffer from limited coverage and difficulty in multi-camera
collaboration, which limits their scalability, whereas emerging
WiFi-based methods can only obtain coarse results due to signal
randomness. To overcome the inherent limitations of unimodal
approaches and effectively exploit the advantage of multi-modal
approaches, this paper presents an innovative WiFi and video-
fused multi-modal paradigm by leveraging a heterogeneous dual-
attentional network, which jointly models the intra- and inter-
modality relationships of global WiFi measurements and local
videos to achieve accurate and stable large-scale crowd counting.
First, a flexible hybrid sensing network is constructed to capture
synchronized multi-modal measurements characterizing the same
crowd at different scales and perspectives; second, differential
preprocessing, heterogeneous feature extractors, and self-attention
mechanisms are sequentially utilized to extract and optimize
modality-independent and crowd-related features; third, the cross-
attention mechanism is employed to deeply fuse and generalize
the matching relationships of two modalities. Extensive real-world
experiments demonstrate that our method can significantly reduce
the error by 26.2%, improve the stability by 48.43%, and achieve
the accuracy of about 88% in large-scale crowd counting when
including the videos from two cameras, compared to the best WiFi
unimodal baseline.

Index Terms—Crowd counting, passive WiFi sensing, visual
information, multi-modal fusion, deep learning.

I. INTRODUCTION

A S CITIES rapidly expand, monitoring gathering crowds
has become an important research field. Despite
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advancements, accurately estimating crowd counts in large-
scale surveillance areas remains a challenging open problem,
essential for numerous applications [1], [2], [3] including crowd
management, traffic control, urban planning, and public safety.
Recent tragic incidents, such as the stampedes in Itaewon, South
Korea [4], and Kanjuruhan Stadium, Indonesia [5], highlight
the urgent need for precise crowd monitoring to preemptively
identify emergencies and implement effective safety measures.

To accurately count crowds in a scenario, the most straight-
forward approach involves utilizing visual information. Con-
sequently, contemporary studies primarily extract pedestrian
features from images or video frames through detection or
regression techniques [6]. However, this approach is signifi-
cantly impacted by variable lighting conditions, occlusions, and
scale changes, rendering it unreliable for robust applications [7].
More critically, a single camera cannot encompass extensive
surveillance areas, severely limiting the applicability. As such,
algorithms that analyze radio frequency (RF) signals have been
developed, which estimate crowd sizes by exploiting the cor-
relation between wireless signals and pedestrian numbers [8].
Among these, the WiFi Channel State Information (CSI)-based
method is notable. It precisely correlates detailed WiFi signal
attributes with crowd counts and, with the aid of deep learn-
ing, achieves accuracies exceeding 85% [9], [10]. Despite its
effectiveness, this method’s practicality is restricted to smaller,
controlled indoor environments.

To break through scalability limitations, emerging research on
passive WiFi sensing-based crowd counting deploys a special
kind of access point (AP), termed WiFi sniffer, to passively
sense the existence of pedestrians in the scenario by capturing
and parsing the probe (request) frames sent from their mobile
devices [11]. However, the challenges from persons with multi-
ple WiFi-enabled mobile devices, uncertain sniffing, and MAC
address randomization [12] severely affect this kind of method
and make it only get a rough accuracy of less than 80%, which
is not sufficient to support high-precision crowd counting in
large-scale surveillance areas.

Multi-modal deep learning (MMDL) is a highly active in-
terdisciplinary field focused on developing models capable of
processing and correlating diverse information types, thereby
delivering more accurate estimates or predictions than tradi-
tional unimodal approaches [13]. Inspired by recent advance-
ments in MMDL and the complementarity between WiFi and
video modalities in terms of scalability, accuracy, and both
deployment and computational costs, we propose an innovative
approach to leverage a network of pervasive WiFi sniffers and
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Fig. 1. Illustration of the deployment of multi-modal HSN.

select video cameras to capture distinct sets of multi-modal
data, and an MMDL-based technique to intricately merge these
diverse data streams, enabling the adaptive delivery of either
global or local crowd counts, which can addresses the limitations
inherent in unimodal solutions and bridges the gap in achieving
high-precision, multi-modal crowd counting.

Accordingly, this paper introduces a flexible, easily deploy-
able Hybrid Sensing Network (HSN), depicted in Fig. 1, to
capture multi-modal data via passive WiFi sensing and cam-
era systems. Additionally, we develop a Heterogeneous Dual-
Attentional Network (HDANet) within a unified MMDL frame-
work to model both intra- and inter-modality relationships.
First, the synchronously collected multi-modal data is differ-
entially preprocessed to eliminate noise and maximally reserve
the crowd-related information, and then fed into a convolu-
tional neural network (CNN)-based feature extraction modules
with heterogeneous architectures to extract different levels and
perspectives features represented by each modality. Second,
inspired by the existing MMDL models for other tasks [14],
[15], we design two effective attention modules, namely the self-
attention and cross-attention modules, to model the intra- and
inter-modality relationships, respectively. In the former, features
are independently embedded with positional information and fed
into the Transformer encoder [16], to discover intra-modality
relationships and achieve context aggregation. In the latter, we
employ the features of global WiFi modality as the key and
value, and the features of multiple local video modalities as the
query, then utilize scaled dot-product attention to achieve local
matching of inter-modality relationships and the feed-forward
neural network (FFN) to generalize these relationships through
the whole feature map. Third, the multi-layer perceptron (MLP)
is employed to fuse the concatenated self-attention and cross-
attention features, and to adaptively select the best features for
local and global crowd counting.

To evaluate our proposed multi-modal crowd counting
method, an experimental HSN is deployed in a real campus
environment with the surveillance area of about 4000 m2, and a
multi-modal dataset is collected during peak hours after classes.
Extensive experimental results demonstrate our method can
significantly reduce the counting error, improve the counting
stability and achieve the state-of-the-art accuracy. Furthermore,
multiple ablation studies not only confirm the effectiveness of
our unimodality treatments and each component of the HDANet,
but also extensively investigate the diversities of different fusion
modes and the impact of multiple aspects, offering valuable
guidance for the practical application and optimization of our
method.

In summary, our main contributions are three-fold:
� Innovative Multi-Modal Paradigm: We introduce and re-

alize all respects of fusing significantly heterogeneous
modalities (i.e., WiFi and Video) for large-scale crowd
counting from scratch, which exploits the complementary
features between two modalities;

� HDANet Fusion Model: We develop a novel MMDL-based
fusion model, termed HDANet, which differentially pre-
processing sensing data and extract features from disparate
modalities, and then meticulously fuses both intra- and
inter-modality correlations;

� Real-World Application and Insights: We extensively val-
idate the feasibility and effectiveness of both the paradigm
and model in a real-world, large-scale scenario, offering
practical insights and analysis based on our findings.

The rest of this paper is organized as follows. Section II sur-
veys the related literature. Section III completely elaborates the
proposed method. Section IV presents extensive experimental
results and analyses. Section V concludes the whole paper and
sheds light on the future work.

II. RELATED WORK

In this section, we shall briefly introduce the literature of
crowd counting and fusion of WiFi and videos.

A. Unimodality-Based Crowd Counting Method

The unimodal approach to crowd counting typically encom-
passes vision-based and WiFi-based methods. Early vision-
based methods [17] extract pixel-level or texture-level shallow
features to identify individuals, resulting in rough results; in-
dividual recognition [18] can achieve accurate results but are
only suitable for sparse scenarios; line counting [19] counts
pedestrians crossing the marked line and cannot identify stop-
ping ones; recent density mapping [20], [21], [22], [23] suf-
fers from the scale change and video quality [24]. Overall,
vision-based methods though are accurate, but are limited by
the inherent limitations of visual modality [25]. In contrast,
the low-cost and strong-scalability passive WiFi sensing (PWS)
enables large-scale crowd counting [26]. Fukuzaki et al. [27]
verified the feasibility of PWS-based crowd counting through
field experiments, with an error rate of over 30%; similarly,
Weppner et al. [28] employed WiFi sniffers with directional
antennas to reduce the rate to nearly 20%; our recent work [29]
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demonstrated the effectiveness of deep learning in capturing
the complex spatial-temporal relationship between WiFi sensing
data and crowd counts. However, the existing PWS-based meth-
ods, although seem feasible in practice, are limited by relatively
low accuracy.

In summary, different from existing unimodal approaches,
we proposed to utilize the complementarities between the two
modalities, especially the scalability and accuracy, to deeply
mine and fuse the crowd-related information in a multi-modal
paradigm.

B. Multi-Modality-Based Crowd Counting

Though the current MMDL studies mainly focus on the fusion
of natural language [30], vision [31] and audio [32], a few recent
studies attempted to shift MMDL to crowd counting. First,
researchers conducted the crowd counting study based on the
fusion of images and image-like modalities. Wagner et al. [33]
leveraged two CNNs to extract features from RGB and thermal
images, and then fuse them by fully connected layers, reducing
the impact of lighting conditions; Schlosser et al. [34] utilized
a similar approach to fuse RGB and LiDAR modalities, and
reported a superior result compared to pure RGB images; Zhang
et al. [35] proposed a plug-and-play cross-modality spatial-
channel attention module for RGB-Thermal or RGB-Depth fu-
sion. Such methods still suffer from the shallow fusion of images
of different forms and the inherent limitations of the vision-based
approach. Second, some researchers tried to leverage MMDL
based on vision unimodality. Hydra-CNN [36] estimates overall
crowd density by learning a multi-scale nonlinear regression
model for scenarios with any scale; MoCNN [37] integrates
multiple CNN models, which can adaptively select appropriate
ones for processing different appearances of scenarios, and
then weighs and sums the respective estimates. However, such
methods do not fuse new modalities and strictly do not belong
to the multi-modal fusion.

In summary, there has yet to be any work on fusing sens-
ing data from significantly heterogeneous modalities, and our
systematic research on the WiFi and video-fused paradigm can
effectively dig the enormous potential of MMDL for large-scale
and high-precision crowd counting.

C. Fusion of WiFi and Video Modalities

The complementarity between WiFi and video modalities
in terms of location estimation has attracted the attention of
researchers in recent years [38], [39]. In pedestrian tracking,
an early study [40] proposed a switching-based mechanism to
fuse measurements obtained from WiFi sniffers and a camera
for tracking single pedestrians; MOLTIE system [41] further
employed trajectory correlation-based matching approach to
extend in multi-pedestrian case. In indoor localization, WAIPO
system [42] utilized various build-in sensors of smartphones, es-
pecially the camera and WiFi, and employed a probability-based
weighting method to fuse WiFi localization and image matching
results to obtain location estimate; Redžić et al. [43] designed
two result-level fusion mechanisms based on threshold and

particle filter, respectively, to fuse similar WiFi and image local-
ization results; on these grounds, Tang et al. [44] further obtained
fused localization based on Bayesian probability weighting of
two estimates, and then leveraged the hybrid whale optimization
algorithm (HWOA) to adaptively determine the threshold for
fusing three estimates. Besides the field restriction, the existing
fusions are essentially based on late fusion, and thus cannot
deeply mine the relationship between two modalities.

In summary, our work not only extends the active localization
or tracking into the field of passive crowd counting, but also
proposes a more effective middle fusion-based mechanism with
dual-attention embedding to discover and exploit intra- and
inter-modal correlations.

III. METHODOLOGY

This section shall present general deployment principles of
the multi-modal HSN, and then details the design of HDANet.

A. Multi-Modal Hybrid Sensing Network

To meet the need of crowd monitoring applications in large-
scale scenarios, an HSN consisting of a large number of WiFi
sniffers and a small number of cameras is constructed, as shown
in Fig. 1. The HSN employs a flexible deployment approach
tailored to local conditions, without adhering to any strict prereq-
uisite, thereby expanding the practicality of the proposed method
and reducing additional costs. For example, the HSN can be built
by adding a small number of video cameras to an existing WiFi
sniffer sensing network [29], or by deploying a large number of
low-cost WiFi sniffers to an existing surveillance system covered
by local videos.

The WiFi sniffers within the HSN can be dedicated multi-
module WiFi sniffers, or commercial programmable WiFi APs.
Equipped with a sniffing script, each sniffer tags its data with
timestamps and regularly uploads the data to a server for further
analysis. The deployment of sniffers can follow either manually
uniform or automated schemes [45] to ensure reliable data
collection and fulfill localization requirements for WiFi data
preprocessing.

The camera(s) in the HSN, typically standard surveillance
or security cameras, stream real-time video to the server via
wired connections. While cameras can be positioned flexibly
across the surveillance area, strategically placing them in ar-
eas of high crowd density can enhance multi-modal counting
accuracy, as supported by findings from the ablation study in
Section IV-F. Additionally, setting cameras to lower frame rates
and resolutions can effectively reduce both data transmission
and computational demands.

After completing the deployment of the HSN, it can be seen
from Fig. 1 that the minor camera(s) cannot cover the entire
large-scale surveillance area due to the limited coverage range.
However, the PWS which has comprehensive and consistent
sensing, can complement the spatial coverage gap occurred in
the video surveillance. Furthermore, since the sensing data cap-
tured in the jointly covered area by two modalities comes from
the same crowd, and the crowd behavior and distribution are
usually relatively regular [29], thereby a certain spatial-temporal
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Fig. 2. Flow diagram of the proposed multi-modal crowd counting method.

correlation do exists between the global WiFi and (several) local
video(s) sensing data. Consequently, utilizing cross-modality at-
tention to learn these correlations and thus obtain cross-modality
features can not only help to compensate for the deficiencies of
crowd counting driven by any unimodal data, but also calibrate
the WiFi sensing results in areas missed by video(s).

B. The Proposed Multi-Modal Crowd Counting Method

This section explains how to leverage the multi-modal data
captured by the HSN for accurately crowd counting.

1) Overview: The proposed multi-modal crowd counting
method mainly can be divided into two stages, as shown in Fig. 2.
� Multi-modal Data Aligning and Preprocessing: First, to

overcome the randomness of PWS and meet the format-
ted requirement of input for the feature extraction mod-
ule, we respectively employ the sliding window mecha-
nism and WiFi-sensed density map (WDM) to filter WiFi
sensing data within a certain period of time and then
formalize it as robust representations of WiFi modal-
ity [46]. Second, to achieve temporal alignment and re-
duce computational overhead, we sample key frames,
perform ROI selection, crop and resize the video modal
data with the same step size, to obtain efficient image
frames.

� Multi-modal Feature Extraction, Optimization and Fusion
Based on HDANet: First, according to the abstract degree of
crowd-related features contained in the preprocessed data
of two modalities, CNNs with different architectures are
adopted to extract the respective crowd-related features.
Second, to fully exploit the intra-modal contextual corre-
lation, the self-attention mechanism is utilized to optimize
the intra-modality features. Third, the cross-modality at-
tention mechanism and FFN are employed to match and
generalize the inter-modality relationships. Finally, MLP
is adopted to achieve adaptive selection of self-attention
and cross-attention features, and output local and/or global
crowd counts.

2) Multi-Modal Data Preprocessing: We shall describe the
data preprocessing methods of two modalities in the following,
respectively.
� WiFi Modality Preprocessing: Typically, the original WiFi

sensing data is represented as separate items consisting
of the MAC address of sensed mobile device, received
signal strength (RSS), channel No., timestamp, etc., which
includes a large amount of redundant or crowd-irrelevant
information. Meanwhile, the random number of items
in a time window leads to the uncertainty of inputted
dimension, resulting in the difficulty of uniformly pro-
cessing by the model. As such, we employ WDM to
ensure compact encoding WiFi sensing data and abandon
redundant information. To convert continuous physical
coordinates into discrete image coordinates in pixels, a
single pixel in the WDM corresponds to a 1 m × 1 m
square physical plane. Let nw be the number of sensed
devices, L̂ = {̂l1, l̂2, . . ., l̂nw

} be the set of their location
estimates by an arbitrary WiFi localization algorithm [39],
and P = {p1, p2, . . ., pnw

} be the set of pixel set trans-
formed from L̂, thereby the intermediate image I can be
generated as follows

I(p) =

nw∑
i=1

δ(p− pi), (1)

where δ is the impulse function. Further, the WDM can
be obtained through convolving and smoothing I with a
Gaussian kernel function with the size ks, i.e.,

WDM(p) = I(p) ∗Gσ(p), (2)

Gσ(p) = exp

(
−||p− pi||2

2σ2

)
, (3)

where Gσ(p) is the fixed Gaussian kernel function and σ
is the standard deviation. Finally, a WDM with the size
of Cw ×Hw ×Ww is obtained, where Cw = 1, Hw, and
Ww are the channel number, pixel height and width of the
WDM, respectively.
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� Video Modality Preprocessing: First, since each deployed
local camera has a fixed perspective, it is easy to mark
the area of interest (ROI) [47] for different cameras where
pedestrians may exist, resulting in excluding redundant
background information with complex textures or suscep-
tible to environmental interference. Second, to amplify the
effective crowd sensing information of the video modality
and ensure that the following feature extraction module
can consistently process ROI images with dimensional
differences, the marked frame is further cropped into a
rectangle containing the ROI region and resized to a uni-
form size Cv ×Hv ×Wv , where Cv = 1, Hv and Wv

denote the channel number, pixel height and width of the
preprocessing frame from video modality, respectively.

3) HDANet: According to locations of multi-modal fusion
occurring in the network, it can be divided into three modes: data-
level early fusion, feature-level middle fusion and result-level
late fusion [48]. Existing studies [34] show that the fusion that
occurs at higher levels (i.e., middle or late fusion) generally has
better predictions. In fact, WiFi and video modalities contain dif-
ferent forms of global and local crowd information respectively,
and the expression and description perspectives are very dif-
ferent. Therefore, due to the heterogeneity and non-parallelism
between the original data, the early fusion will cause the ho-
mogenization effect of the model, and is hard to obtain the ideal
effect; while the late fusion is essentially a simple summation
or weighted average of the estimates by different modalities,
and is hard to extract important cross-modality information,
resulting in limited improvement of the results. As such, we
design the HDANet based on middle fusion, which consists of
four modules: crowd-related feature extraction, intra-modality
context aggregation, inter-modality cross-attention fusion, and
adaptive feature selection and output.
� Crowd-Related Feature Extraction: This module uses

CNN models with different architectures to extract
modality-independent and crowd-related features at the
same levels and perspectives. To avoid complicated pa-
rameter tuning and ensure the reliability, we prefer to use
existing and widely validated CNN architectures as the
relatively independent feature extraction backbones of two
modalities. The CNN for WiFi modality (WiFi-CNN) takes
the manually extracted WDM which has a higher abstract
level, as the input, such that the LeNet-5 network [49]
with a shallow convolutional structure is employed; while
the CNN for video modality (Video-CNN) takes the pre-
processed video frame which has a more primitive repre-
sentation as input, and thus we employ ResNet34 [50] with
a deeper convolutional structure. Therein, the convolution
kernels can represent different and specific image patterns
and are used to traverse 2D video frames, compute the
convolution result of each small region, and finally ob-
tain the feature plane consisting of all local features; the
pooling layer is connected after each convolutional layer
to optimize parameter efficiency. The WiFi-CNN includes
two convolution layers consisting of 5× 5 kernels with
the convolution mode of step size 2, ReLU activation and
maxpooling layer, such that the WiFi feature map with

the size ofC ′
w ×H ′

w ×W ′
w = 16×Hw/4×Ww/4 is ob-

tained; the Video-CNN contains 5 groups of 34 residual
convolution layers composed of 3× 3 kernels, of which
the first convolution in each group adopts the convolu-
tion mode of step size 2, and ReLU activation, such that
the video feature map with the size of C ′

v ×H ′
v ×W ′

v =
512×Hv/32×Wv/32 is obtained.

� Intra-Modality Context Aggregation: This module uses the
multi-head self-attention mechanism to model the channel
domain and spatial domain correlation of the WiFi and
video modalities, respectively, so as to optimize the crowd-
related features of each. In general, the self-attention can
be described as a mapping from a query (Q) and a set of
key-value pair (K-V) to the output which is a weighted
sum of values and the weight matrix is determined by
both the query and key. According to [16], we modify
the original Transformer encoder to implement our self-
attention mechanism, which consists of a multi-head self-
attention sublayer and a FFN sublayer. Since the multi-
modal data has been preprocessed as 2D feature planes
with different channels, multi-head self-attention modules
with same structure but different parameters are employed
for each modality. First, for each head, the feature plane
F ∈ RC ′×H ′×W ′

is mapped to three types of representa-
tion in different feature subspaces through learnable 1× 1
convolution kernels, which can be expressed as

QF = WQ
i ∗ F,KF = WK

i ∗ F,VF = WV
i ∗ F, (4)

where ∗ is the convolution operation, i is the subscript of
the ith head, and WQ

i , WK
i , and WV

i correspond to the
learnable convolution kernel of the query, key, and value,
respectively, with the same dimension C ′′ ×H ′ ×W ′.
Second, we divide the feature plane in each channel into
S 2D patches, and then re-assemble [51] them into em-
bedding vectors Q′

F, K′
F and F′

F with the dimension of
S × Ĉ, where Ĉ = HW

S C ′′
j (j ∈ [Q,K, V ]), such that each

embedding vector contains information in both channel and
spatial domains. Third, the weight matrix is obtained using
scaled dot-product attention, and thus the self-attention
features of a single head can be calculated by

SAi (Q
′
F,K

′
F,V

′
F) = softmax

(
Q′

FK
′T
F√

Ĉ

)
V′

F. (5)

Hence, by concatenating self-attention features of all heads
and leveraging the linear transformation, the multi-head
self-attention features can be obtained by

MHS(F) = concat (SA1, . . .,SAi, . . .,SAh)W
O,

(6)
where WO is the transformation matrix and h is the num-
ber of heads. Finally, to further optimize the fragmented
feature expression, an FFN composed of two consistent
fully connected layers is employed to aggregate multi-head
feature MHS, i.e.,

FSA = ReLU (MHS ·W1 + b1) ·W2 + b2, (7)
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Fig. 3. Structures of multi-head attention modules. (a) Self-Attention. (b) Cross-Attention.

where Wi and bi are the weight and bias of each layer,
respectively, and ReLU is the activation function. Mean-
while, both FNN are followed by the residual structure
and layer normalization in order to fully aggregate the
optimized features. Fig. 3(a) details the module structure
of one head of multi-head self-attention.

� Inter-Modality Cross-Attention Fusion: This module uses
the multi-head cross-modal attention mechanism to mine
the matching relationship between modalities and propa-
gate it to the whole feature map. Existing cross-modality
attention mechanisms mainly include two modes, i.e., di-
rect stacking features of two modalities and then utilizing
self-attention to obtain cross-modality features [14], and
consistently crossing between two modalities [35], both
of which inevitably increase the computational overhead
and are only suitable for the case that multiple modal-
ities describe objects at different perspectives but with
the same scale, e.g., the fusion of RGB image and depth
image or thermal image. In contrast, we consider that
the WiFi and video modalities actually describe the same
crowd at different scales, thus take the global features
contained in the WiFi modality as the key and value,
and the local features of multiple video modalities as
query vectors. Then, multiple local matching relationships
are obtained by using scaled dot-product attention, and
generalized and fused into the whole feature map by us-
ing the FFN. First, since the self-attention features have
been re-assembled in the above module, the optimized
features of two modalities can be directly used, denoted
as Fw

SA and Fv
SA, respectively. Second, using the similar

multi-head mechanism, the linear transformation of each
head to the self-attention feature of two modalities can be

formulated as

Qv
SA = WQ

i ∗ Fv
SA,K

w
SA = WK

i ∗ Fw
SA,V

w
SA

= WV
i ∗ Fw

SA. (8)

Third, the cross-attention features of a single head and
multiple head are obtained by using the similar method,
which can be calculated as follows

CAi (Q
v
SA,K

w
SA,V

w
SA)

= softmax

(
Qv

SA(K
w
SA)

T√
Ĉ

)
Vw

SA. (9)

MHC (Fw
SA,F

v
SA)

= concat (CA1, . . .,CAi, . . .,CAh)W
O. (10)

Finally, to extend the cross-modality matching relationship
to the whole feature map, a similar FFN composed of two
consistent fully connected layers is adopted to fuse the
multi-head cross-attention feature MHC, i.e.,

FCA = ReLU (MHC ·W1 + b1) ·W2 + b2. (11)

The FFN then employ residual structure and layer normal-
ization to fully integrate cross-attention features. Fig. 3(b)
details the module structure of one head of multi-head
cross-attention.

� Adaptive Feature Selection and Output: This module
adaptively selects important features from global cross-
modality features and local intra-modality features by us-
ing learned weights, and thus implements the mapping
to the crowd count. Since our cross-modal features are
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based on the global WiFi modality, which underwent intra-
modality context aggregation and cross-modality relation-
ship matching and generalization, such that Fw

CA is taken
as the main feature; meanwhile, considering that each
video modality may provide higher contributions for its
coverage when the video quality is relatively high, we
adopt self-attention feature Fvi

SA of each video modality
as the auxiliary feature. Noted that each Fvi

SA will be
reversely re-assembled (R 2 A) with global average pooling
(GAP) to restore the original correspondence and reduce
the computation. Finally, a simple but effective 3-layers
MLP is adopted to implement the adaptive selection of
multi-modal features and output the count estimate, which
can be synthetically formulated as

Ô = ReLU(ReLU(concat(Fw1
CA,F

v1
SA, . . .,

Fwn
CA,F

vn
SA)W1 + b1)W2 + b2)W3 + b3, (12)

where Fwi
CA and Fvi

SA denote the cross-attention feature
when fusing the ith local video and the self-attention
feature of the ith video modality, respectively, n is the
number of cameras, Wi and bi are the learnable weights
and biases of the ith layer of the MLP, respectively. With
the adaptive selection function, this module can also ef-
fectively shield the problem of videos with low quality,
namely, by reducing the weight of Fvi

SA. Moreover, the
target Ô can be an output vector consisting of an arbitrary
number of local crowds or a scalar containing only the
count of global crowd, allowing the proposed method to be
flexibly set based on the actual application requirements or
the available crowd labels.

� Training Method of the HDANet: Due to the complex
multi-branch structure of HDANet (e.g., the ResNet34
backbone, context aggregation module and cross-attention
module) and the need for inputting multiple videos simul-
taneously, it is hard for conventional end-to-end training
methods to optimize such a large number of learnable
parameters. As such, we adopt a step-by-step pre-training
approach to train each component of HDANet separately.
First, after connecting the context aggregation module and
output module to the WiFi-CNN and Video-CNN, they are
pre-trained with WDMs and preprocessed frames as inputs,
respectively. Second, the corresponding parameters of the
pre-trained models are loaded and frozen into each compo-
nent of the integrated HDANet, and the cross-attention and
output modules are fine-tuned with pairs of synchronized
WDM and preprocessed frame as inputs. Above all train-
ing processes adopt the commonly used (multi-objective)
regression loss function, namely the mean square error
(MSE), which can be calculated by

MSE
(
Ôi,O

gt
i

)
=

ntr∑
i=1

(
Ôi −Ogt

i

)2
, (13)

where Ôi and Ogt
i are the estimated and ground-truth

crowd count(s) in scalar or vector, respectively, and ntr

is the number of training samples.

Fig. 4. The layout of the real-world dataset’s testbed (Best viewed in color).

IV. EVALUATION

In this section, extensive experiments are conducted on a real-
world dataset to systematically and comprehensively evaluate
the performance of the proposed multi-modal crowd counting
method.

A. Real-World Multi-Modal Crowd Counting Dataset

A experimental HSN was deployed in a campus road network
environment with a surveillance area of about 4000 m2, and a
real-world dataset was collected in the testbed, whose layout
is shown in Fig. 4. In what follows, the collection and prepro-
cessing settings of WiFi and video modalities are presented in
details, respectively.

1) WiFi Sensing Data Collecting and Preprocessing: A total
of 14 “Raspberry Pi 3B+” are customized as WiFi sniffers (blue
circles, W1 to W14) and uniformly deployed in the surveillance
area. All sniffers are strictly synchronized by embedding a
high-precision time synchronization module (DS3231) and con-
necting a well-timed PC to calibrate the module in advance. The
offline survey was conducted using 6 different smartphones, and
fingerprints are generated by WiFi sensing data within a sliding
time window of size ΔT = 60 s and step 1 s. The path-based
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fingerprint collection method [52] is employed to quickly collect
fingerprints from more than 300 locations to build a location
fingerprint database, and the KNN algorithm with k = 3 is used
for localization. In the data collection stage, a total of 2280 s
WiFi sensing data including a peak time after classes were
obtained. As a result, 2280 WDMs with Hw ×Ww = 140× 80
are generated using a Gaussian kernel with the size of ks = 15
and standard deviation of σ = 2 [46].

2) Video Sensing Data Collecting and Preprocessing: A total
of 5 smartphones are strictly synchronized by online calibrating
their (Android) system clocks in advance, and then installed on
shelves (with the height of 2.1 m) and deployed at the edge of the
surveillance area (trapezoids with different colors), functioning
as cameras to cover the whole area and record videos of their
corresponding scenarios (see 5 sub-regions with different colors
in Fig. 4). We denote the 1st to 5th scenario as S1 to S5 and the
corresponding videos as V1 to V5 unless otherwise specified. To
obtain the ground-truth crowd counts, each video is truncated
to 2280 s length of corresponding WDMs and carefully labeled
by real humans with the sampling rate of 1 frame per second,
and the sum of the counts in five scenarios is taken as the total
crowd count. Finally, the frame corresponding to each WDM
is preprocessed by the method described in Section III-B2,
and the resolution is resized to be Hv ×Wv = 80× 160 based
on tradingoff between the counting accuracy and overheads
(i.e., using the resolution as high as possible at an affordable
time cost to improve the counting accuracy). According to the
statistics of labels, the total pedestrian traffic of the dataset is
145,617, and the average pedestrian flow per second in the
whole surveillance area is about 64; the relationship among
average counts in each scenario is approximate toCount(V3) >
Count(V5) > Count(V4) ≈ Count(V1) > Count(V2); as for
the video quality, V3 suffers the problem of significant scale
change, and V4, V5 confront serious occlusions.

B. Setup

This subsection first introduce the crowd counting baselines
based on unimodality and multi-modality, respectively, and then
present the training details of models and evaluation metrics.

1) Unimodal Baselines: In our proposed method, the WiFi
modality data has been preprocessed into an image-like format,
and a frame of the video modality is essentially a static image.
Therefore, several popular CNN networks in the computer vision
field, including LeNet-5 [49] (containing 2 convolutional lay-
ers), VGG11 [53] (the variant containing 8 convolutional layers),
ResNet34 [50] (the variant containing 34 convolutional layers),
are adopted as the feature extraction module for the unimodality.
During unimodality-based counting, the transformation from
classification model to regression model is achieved by slightly
adjusting the output layer, as shown in Fig. 5(a); in middle
fusion-based multi-modal counting, each original CNN net-
work only retains its convolutional layers to serve as the fea-
ture extractor. Besides, the traditional global linear regression-
based (denoted by G-POLY [28]) and a state-of-the-art (SOTA)
deep learning-based WiFi unimodal counting methods (DNN-
SCC [29]) are also implemented for comparison.

Fig. 5. Illustrations of simplified structures of unimodal and multi-modal
baselines. (a) Unimodal baselines. (b) Early fusion-based multi-modal baseline.
(c) Middle fusion-based multi-modal baseline. (d) Late fusion-based multi-
modal baseline.

2) Multi-Modal Baselines: Due to the absence of WiFi and
video-fused crowd counting methods currently, we design three
different multi-modal baselines based on the commonly used fu-
sion modes [48] in the field of MMDL. The simplified structures
of each baseline are shown in Fig. 5(b)∼(d).
� Early Fusion-Based Baseline (EF): The fusion occurs at

the input side of the model, and the feature extractor
serves as the fusion network simultaneously. We adjust the
frame(s) of each video into the same size as that of WDM
and stacking them in the channel dimension, facilitating
the processing by the subsequent model.

� Middle Fusion-Based Baseline (MF): The fusion occurs
after feature extracting and before crowd regressing, and
thus the subsequent MLP serves as the fusion network.
We flatten or leverage GAP to handle the feature planes
extracted from the pre-trained CNN of two modalities into
one-dimensional vectors, and thus obtain the concatenated
features. Since the interaction between the two modalities
is not realized, the subsequent MLP can only weigh the
concatenated features that are more helpful to counting.

� Late Fusion-Based Baseline (LF): The fusion occurs af-
ter crowd regressing, and only result-level weighting is
obtained. We employ least square-based multiple linear
regression (MLR) to fuse each local count of WiFi modality
with the local count(s) of video modality, and the fused
results are summed to obtain the total crowd count.

3) Training Details of Models: To fairly compare all meth-
ods, all models are trained with a fixed round of 500, using the
MSE loss function and the Adam optimizer, where the WiFi
unimodality-based baselines employ a smaller learning rate of
lrw = 5e− 4 and the video and fusion counterparts employ a
larger one lrv = lrf = 1e− 3 to adapt the difference of infor-
mation contained in the inputs. For HDANet and the correspond-
ing components in baselines, the following hyperparameters
are adopted: WiFi-CNN and Video-CNN employ the original
setting of the corresponding CNN backbones, respectively; the
multi-head self-attention modules of WiFi and video modalities
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TABLE I
GLOBAL COUNTING RESULTS OF WIFI UNIMODAL AND MULTI-MODAL (WITH DIFFERENT NUMBER OF VIDEOS) METHODS

employ hw = 5 heads & FFN with 512 nodes and hw = 16
heads & FFN with 2,048 nodes, respectively; the multi-head
cross-attention module employ hw = 10 heads & FFN with
2,048 nodes; the number of nodes in each layer of the MLP is
1024/256/5. Finally, the whole multi-modal dataset is divided
into 50% training and 50% test sets, each of which contains 15
out of 30 timeslots divided from all 2280 s data [29]. Note that
other ratios of dataset division were also tested, demonstrating
the same or similar results, and are therefore not shown in detail.

4) Evaluation Metrics: Four metrics are adopted to com-
prehensively evaluate the counting performance, including two
common crowd counting metrics [7], [54], namely the mean
absolute error (MAE) and the MSE, and two more intuitive
metrics, i.e., the mean absolute percentage error (MAPE) and
the count accuracy (ACC), which are respectively defined as
follows

MAE =
1

nte

nte∑
i=1

∣∣∣Ôi −Ogt
i

∣∣∣ , (14)

MSE =
1

nte

nte∑
i=1

(
Ôi −Ogt

i

)2
, (15)

MAPE =
1

nte

nte∑
i=1

∣∣∣Ôi −Ogt
i

∣∣∣
Ogt

i

× 100%, (16)

ACC = 1−MAPE, (17)

where nte is the number of test samples, Ôi and Ogt
i are the

estimated and ground-truth crowd counts in scenarios or the
total count of the ith test sample, respectively. Generally,
the MAE, MAPE, and ACC represent counting accuracy, while
the MSE reflects counting stability.

C. Comparisons of Counting Performance

To validate the effectiveness of and investigate the improve-
ment by the proposed multi-modal HDANet, we test global
counting for the whole surveillance area by the SOTA and our
(denoted by WDM+CNN) WiFi unimodality-based methods,

and the multi-modal baselines as well as our HDANet combining
with a small number of videos (i.e., 1 or 2), as shown in Table I.
In addition to aforementioned metrics, the table also provides
the reduced percentage of MAE achieved by multi-modal meth-
ods compared to the best WiFi unimodal baseline, i.e., our
WDM+CNN. It can be clearly seen that, the counting accuracy is
improved to various degrees by leveraging multi-modal methods
when combining the global WiFi with local video modality,
which validates the correctness of our WiFi and video-fused
multi-modal counting idea. Particularly, except for the MAPE
in the case of one local video combined, HDANet significantly
outperforms WiFi unimodal and multi-modal baselines when
combining either one local video (the MAE reduced by 22.61%,
MSE reduced by 43.31%, and ACC reach 86.75%) or two
local videos (the MAE reduced by 26.21%, MSE reduced by
48.43%, and ACC reach 87.97%), confirming its effectiveness in
simultaneously learning intra- and inter-modality relationships
of two modalities, and excellent counting accuracy.

However, it seems that the reductions of MAPE achieved
by HDANet compared to other multi-modal baselines are not
such obvious or even worse than the MAE, which does not
comply with the common sense. In fact, the MAPE is impacted
not only by the absolute error in the numerator but also by the
actual count in the denominator, making it decrease faster when
the actual count is smaller. As shown in Fig. 6, the test set is
sorted according to the ground-truth count, and the differences
between absolute errors (AEs) and between absolute percentage
errors (APEs) of MF and HDANet combining with 1 video,
and of LF and HDANet combining with 2 videos are plotted
respectively. It can be found that HDANet significantly reduces
the estimation errors when the count is large, and maintains
the errors close to or better than those of baselines, where the
former is more important for judging the emergency. More
importantly, considering the fact that conflicts exist when the
model is learning between cases of large and small counts, e.g.,
the model needs to have “prediction” ability due to the occlusions
in large count case, but not for the small count case, it is shown
that HDANet can reasonably balance such conflicts and achieve
a better result.
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TABLE II
BOTH THE LOCAL AND GLOBAL MAES OBTAINED BY DIFFERENT METHODS OR BACKBONES OF UNIMODALITY-BASED CROWD COUNTING

Fig. 6. The differences between AEs and between APEs of multi-modal base-
lines and HDANet regarding the change of actual crowd counts. (a) MF+1Video
VS HDANet+1Video. (b) LF+2Videos VS HDANet+2Videos.

Since the MAE is approximately positively correlated with
other metrics and can more obviously reflect performance differ-
ences, it will be employed as the main metric to investigate how
several key factors affect the counting accuracy of our method
in the following.

D. Effectiveness of Unimodal Branch

It is intuitive to improve the counting performance of HDANet
when choosing a better handling of each modality, especially
the crowd-related feature extraction module. As such, we in-
vestigate how different CNN backbones affect the counting of
each modality, and the corresponding MAEs of both local (each
scenario) and global (summation of all locals) counting are listed
in Table II, where the WiFi unimodal method is achieved by
multi-objective regression and the video unimodality, single-
objective regression. It can be found that: due to the sparsity and
manual feature reconstruction (i.e., constructing WDMs) of the

WiFi modality, LeNet-5 which has fewer convolutional layer can
achieve better counting than others, while the deeper models in-
cluding VGG11 and ResNet34 are prone to the overfitting; on the
contrary, the data of video modality is relatively raw and contains
richer information, such that the deepest ResNet34 achieves
the best result; although the smartphone-captured videos have
the problem of low quality, both the local and global count-
ing accuracy of the video modality exceeds that of the WiFi
modality, which complies with the common sense. To sum up,
it is reasonable for HDANet to select LeNet-5 and ResNet34
as the backbones for feature extraction of the two modalities,
respectively.

E. Effectiveness of Multi-Modal Data Preprocessing

First, the effectiveness of WiFi modality preprocessing has
been extensively validated in [46]. Second, in order to verify
the effectiveness of our video modality preprocessing, the video
unimodal baseline based on ResNet34 is utilized while keeping
other settings. Four simple but effective pre-processing methods
are compared, i.e., the original (ORIG), ROI-marked (ROI), our
ROI-marked plus cropped (ROI+CROP), and the foreground
(FG) extracted from continuous video frames [55], as illus-
trated in Fig. 7, and the corresponding cumulative distribution
functions (CDFs) of AEs in each scenario are plotted in Fig. 8.
As can be seen, ROI+CROP which has a lower computational
overhead than ORIG can achieve similar (e.g., S1 and S3) or
better (e.g., S2, S4 and S5) counting accuracy by removing
irrelevant background and enlarging critical areas. In addition,
although the FG has the minimal lowest computation, it is more
susceptible to the noise (e.g., reflections, residual shadows and
slight vibrations of cameras) and occlusion, and lacks the support
of image contexts, resulting in the worst results.

F. Effect of Fused Video Number

From an information theory perspective, it is expected to
obtain more useful crowd-related information by fusing more
videos, potentially leading to better global counting. However,
in addition to adding more computational overhead, extra video
data can also bring several negative effects on the fusion, in-
cluding the increased noise contained in the inputted frame; the
additional branches of the model leading to more parameters to
be optimized simultaneously; the model faces greater difficulties
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Fig. 7. Snapshots of different pre-processing methods for video modality
(V1 ∼ V3 from left to right). (a) ORIG. (b) ROI. (c) ROI+CROP. (d) FG.

Fig. 8. CDFs of AEs obtained by video unimodal counting through different
preprocessing methods in different scenarios (Best viewed in color).

in balancing the videos with different patterns of crowd distri-
bution across different local areas, resulting in the challenge
of fusing or balancing multiple local videos for better counting
performance. As such, we shall investigate the effect of different
numbers of fused video in the following.

To determine the selection order of different videos, a pre-
liminary experiment is conducted to investigate the contribution
or criticality of each local video. In Fig. 9, the MAEs of all
multi-modal baselines combined with five different local videos
are plotted. It can be found that the contribution of each local
video is approximately V3 > V5 > V4 > V1 > V2, positively
correlating with the average pedestrian flow in each scenario,

Fig. 9. Comparison of global counting MAEs between multi-modal baselines
and HDANet when combining with each local video.

Fig. 10. MAE curves of multi-modal methods when the number of fused
videos increasing (W and V are short for “WiFi” and “Video”, respectively).

which implies that the deployment of cameras should prioritize
the areas with higher pedestrian traffic, e.g., entrances and exits
of a building, queuing or waiting areas, and locations prone to
congestion.

Finally, in the case of fusing multiple videos, we adopt a
greedy selection strategy based on the sorted contributions or
criticalities of all videos, whose approximate optimality has
been verified by exhausting all

∑5
i=1 C

i
5 combinations, and the

MAE curves of all multi-modal methods with the number of
fused videos increasing is shown in Fig. 10. As can be seen,
EF employs a single feature extractor to process heterogeneous
multi-modal data and suffers from the weak learning ability for
handling video modalities and the inability to capture both the
intra- and inter-modality relationships, resulting in sharp perfor-
mance dropping when the number≥ 3; other three methods have
similar curves, but MF and LF are still limited by the insufficient
capture of two relationships and also reach their performance
limit when fusing two videos; HDANet overcomes above short-
comings by extracting more useful information to offset negative
effects, and thus can obtain its optimal performance when fusing
3 videos and also far exceeds other baselines when fusing
any number of local videos. In summary, to achieve the best
performance in the practical multi-modal crowd counting, the
contribution of each video should be weighed, and 2 to 3 videos
with larger contributions should be selected for fusion.
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Fig. 11. The effect of the LE (RMSE) on counting error (MAE) (Best viewed
in color).

G. Effect of Localization Errors on Counting Accuracy

Since WiFi localization plays a vital role in constructing the
WDM of the WiFi modality, it is necessary to discuss how the
localization error (LE) in WDM affects final crowd counting.
As such, we intentionally reduce the dimensionality of the RSS
fingerprints by gradually removing WiFi sniffers (0 ∼ 11), as
was done in [29], to weaken the localization ability (i.e., to
increase the LEs), and plot the counting errors (MAEs) of
both the optimal WiFi unimodal baseline (WDM+CNN) and
multi-modal method (HDANet combining global WiFi with one
local video V3) in Fig. 11. The root mean squared error (RMSE)
is utilized to measure the LE, which can be calculated by

RMSE =

√√√√ 1

ntf

ntf∑
i=1

(̂
li − lreali

)2
, (18)

where ntf is the number of testing fingerprints, and l̂i and
lreali are respectively the location estimates of KNN and the
real location of the ith testing fingerprint’s device. According to
Fig. 11, we can draw the following conclusions.

First, the LEs undoubtedly lead to inaccurate crowd represen-
tations of WDMs, and thereby degrade the counting accuracy of
WiFi unimodal methods. However, the counting error appears
to rise when LEs are relatively large rather than uniformly
scaling with the LE due to the compensations of nearby devices’
localization results with small LEs [29] and the utilization of
spatial correlation by neural networks [46].

Second, the slight fluctuations in the MAE of HDANet (V3)
with increasing the LE imply that the negative effect of LEs
can be considerably alleviated in our multi-modal paradigm.
Through investigating the difference between the WiFi unimodal
and multi-modal methods, it can be intuitively explained as
follows: 1) the extra and more useful pedestrian location-related
information brought by the video modality is leveraged in an
alternative style, i.e., the Adaptive Feature Selection Module of
HDANet; 2) the errors brought by LEs in the abstract crowd
features of WiFi modality are calibrated in the process of
multi-modal feature interaction and matching, i.e., the Inter-
Modality Cross-Attention Fusion Module of HDANet. Note that
the HDANet combining global WiFi with other local videos (V1,
V2, V4, V5) is also tested (but not plotted in the figure to avoid

TABLE III
THE GLOBAL COUNTING MAE OF HDANET WITH DIFFERENT NUMBER OF

FUSED VIDEOS WHEN GRADUALLY ADDING ITS COMPONENTS

chaos), and it can be found that all the combinations are superior
to that of the WiFi unimodal method but with different degrees
(approximate to the ranking of each video’s criticality), which
conforms to above discussions. All in all, HDANet also owns
the advantage of effectively combating the influence of LEs on
the counting accuracy.

H. Effectiveness of Components in HDANet

In terms of model design, the superiority of HDANet mainly
comes from the mode of middle fusion (M2F ), the step-by-
step pre-training of each module (PT), the self-attention-based
context aggregation module (SA) that captures intra-modality
relationships, and the cross-attention module (CA) that captures
cross-modality relationships. As such, we try to investigate their
effectiveness by gradually increasing above components in the
experiment of fusing different numbers of videos, as shown
in Table III. We can conclude that: as the number of videos
increases, the scale of the model and even the parameters to
be optimized continue to grow, making the role of PT more
and more obvious; SA enhances the counting accuracy in all
cases with a relatively balanced amplitude by adding the context
aggregation ability of each modality; CA is effective when fusing
fewer local videos (≤ 3 ), but will lose its function when more
videos are fused, which may be due to the trade-off it encounters
when generalizing distinct inter-modality patterns provided by
more videos. Overall, as each component is added, the counting
error gradually decreases, validating the effectiveness of each
component in HDANet.

To further intuitively investigate the effectiveness of SA and
CA, we randomly select a multi-modal test sample, and calculate
the self-attention weights of WiFi and video (V3) modalities

by softmax

(
Q′

FK′T
F√

Ĉ

)
in Section III-B3). Due to the space

limit, only the part of the embedded vector of each modality is
truncated for visualization, as shown in Fig. 12(a) and (b), where
the weight is represented by the connection with different thick-
nesses. Similarly, the weights of cross-attention between WiFi
modality and two video modalities (V3 and V5) are calculated

by softmax

(
Qv

SA(Kw
SA)T√
Ĉ

)
and visualized in Fig. 12(c). The ob-

servation of weight distributions reveals that: the self-attentions
of two modalities different patterns of attention, i.e., the WiFi
modality focuses more on its own and adjacent positions, while
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Fig. 12. Visualized self-attention (SA) and cross-attention (CA) of a randomly selected multi-modal test sample (thicknesses of connections reflect different
weights). (a) Visualized SA of WiFi Modality. (b) Visualized SA of Video Modality (V3). (c) Visualized CA between WiFi and Video Modalities (V3 and V5).

the video modality pays more attention to distant or important
positions, which is caused by the differences in the expression
of two modalities in terms of data scale and perspective; in
cross-modal attention, different local videos focus on different
positions of the global WiFi embedding vector, which conforms
to the relationship of “local–part of global”, and the relationship
can be further propagated to the entire feature vector (map)
through FFN. In summary, although limited by the poor in-
terpretability of deep learning, above observations are able to
confirm the validity of SA and CA to a certain extent.

I. Overhead of the Proposed Method

To validate the practicability of the proposed method, a com-
prehensive overhead investigation is conducted in the following.
From start to finish, both the training time and inference/testing
time of the preprocessing (localization and WDM construction
of WiFi, ROI+CROP of the video frame), the respective pre-
training or inferencing of two modalities, and the fine-tuning or
inferencing of HDANet are taken into consideration. Therein,
the training time refers to the time cost of pre-training or
fine-tuning the corresponding models with all training samples
(based on our experimental setup) on an NVIDIA A100 GPU,
while the inference/testing time refers to the average time cost of
the preprocessing, referencing by unimodal methods or HDANet
with one test sample on one core of a common PC CPU (model
Intel i5-11500H). Note that each value in the table is obtained by
averaging 10 independent tests under the same condition, and the
compositions of the total costs are different, i.e., the total training
time equals to the sum of pre-training and fine-tuning, while the
total inference/testing time equals to the sum of preprocessing
of two modalities data and inferencing of HDANet.

As can be seen from Table IV, both the total training and
inference/testing costs are relatively reasonable and validate the
practicability of the proposed method, i.e., the training cost of
HDANet is about 13+ minutes, which is very trivial in the field of
deep learning, and the inference/testing cost of one multi-modal
sample is less than 1 s even using the CPU, which can offer the
counting frequency of 1 Hz in real applications.

TABLE IV
THE RUNTIME PERFORMANCE (UNIT second) OF THE PROPOSED

METHOD (2 VIDEOS)

V. CONCLUSION

This paper presented an innovative multi-modal paradigm
designed to enhance the accuracy and comprehensiveness of
crowd counting in large-scale scenarios. In this paradigm, mea-
surements of global WiFi and local video modalities describ-
ing the same crowd were processed with differential prepro-
cessing, crowd-related feature extraction, context aggregation,
and cross-modal matching by a unified MMDL model, namely
HDANet. Extensive real-world experiments not only validated
the effectiveness and superiority of our approach, but also
fully investigated key challenges faced by practical applications.
Moreover, the proposed method implicitly solved the problems
of weak annotation and videos with low quality, where the
former greatly reduces the cost of annotating video data, while
the latter helps to broaden the application scenarios and reduces
the requirements of computing performance. Our work provides
substantial contributions to the practical application of MMDL
theory and offers robust theoretical and experimental support
for developing high-precision intelligent crowd monitoring sys-
tems.
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In the future, we shall explore how to integrate temporal
data from multiple modalities to enhance counting accuracy,
incorporate cutting-edge vision techniques into HDANet’s video
processing branch, and develop effective synthesis methods for
multi-modal data using generative deep learning models.
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[43] M. D. Redžić, C. Laoudias, and I. Kyriakides, “Image and WLAN bimodal
integration for indoor user localization,” IEEE Trans. Mobile Comput.,
vol. 19, no. 5, pp. 1109–1122, May 2020.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 11,2024 at 05:35:55 UTC from IEEE Xplore.  Restrictions apply. 

https://www.cbsnews.com/news/halloween-crowd-surge-seoul-south-korea-dozens-killed-dozens-injured/
https://www.cbsnews.com/news/halloween-crowd-surge-seoul-south-korea-dozens-killed-dozens-injured/
https://www.bbc.com/news/world-asia-63105945
https://www.bbc.com/news/world-asia-63105945


HAO et al.: HETEROGENEOUS DUAL-ATTENTIONAL NETWORK FOR WIFI AND VIDEO-FUSED MULTI-MODAL CROWD COUNTING 14247

[44] C. Tang, W. Sun, X. Zhang, J. Zheng, J. Sun, and C. Liu, “A sequential-
multi-decision scheme for WiFi localization using vision-based refine-
ment,” IEEE Trans. Mobile Comput., vol. 23, no. 3, pp. 2321–2336,
Mar. 2024.

[45] Y. Tian, B. Huang, B. Jia, and L. Zhao, “Optimizing AP and beacon
placement in WiFi and BLE hybrid localization,” J. Netw. Comput. Appl.,
vol. 164, 2020, Art. no. 102673.

[46] L. Hao, B. Huang, B. Jia, and G. Mao, “On the fine-grained crowd analysis
via passive WiFi sensing,” IEEE Trans. Mobile Comput., vol. 23, no. 6,
pp. 6697–6711, Jun. 2024.

[47] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time
object detection with region proposal networks,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[48] J. Fayyad, M. A. Jaradat, D. Gruyer, and H. Najjaran, “Deep learning
sensor fusion for autonomous vehicle perception and localization: A
review,” Sensors, vol. 20, no. 15: 4220, pp. 1–35, Jul. 2020.

[49] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[50] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[51] K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang, “Transformer in
transformer,” in Proc. Adv. Neural Inf. Process. Syst., M. Ranzato, A.
Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., Curran
Associates, Inc., 2021, pp. 15908–15919.

[52] J. Xu et al., “Embracing spatial awareness for reliable WiFi-based indoor
location systems,” in Proc. IEEE 15th Int. Conf. Mobile Ad Hoc Sensor
Syst., 2018, pp. 281–289.

[53] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2015, arXiv:1409.1556.

[54] Y. Fang, B. Zhan, W. Cai, S. Gao, and B. Hu, “Locality-constrained spatial
transformer network for video crowd counting,” in Proc. IEEE Int. Conf.
Multimedia Expo, 2019, pp. 814–819.

[55] C. Stauffer and W. Grimson, “Adaptive background mixture models for
real-time tracking,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., 1999, pp. 246–252.

Lifei Hao received the BS degree in applied physics
from Chongqing University, Chongqing, China, in
2012, the ME degree in computer technology, and
the PhD degree in computer science and technology
from Inner Mongolia University, Hohhot, China, in
2019 and 2023, respectively, where he is currently a
professor with the College of Computer Science. His
main research interests include Internet of Things,
WiFi localization, passive WiFi sensing, and multi-
modal fusion.

Baoqi Huang (Senior Member, IEEE) received the
BE degree in computer science from Inner Mongo-
lia University (IMU), Hohhot, China, in 2002, the
MS degree in computer science from Peking Uni-
versity, Beijing, China, in 2005, and the PhD degree
in information engineering from Australian National
University, Canberra, ACT, Australia, in 2012. He is
currently a professor with the College of Computer
Science, IMU. His research interests include Internet
of Things and smart sensing. He was the recipients
of 2011 Annual Chinese Government Award for Out-

standing Chinese Students Abroad, the Second Prize of 2022 Natural Science
Award of Inner Mongolia Autonomous Region, and 2023 Annual Baosteel
Outstanding Teacher Award.

Bing Jia (Member, IEEE) received the PhD degree
from Jilin Univesity, Changchun, China, in 2013. She
is currently an associate professor with the College
of Computer Science, Inner Mongolia University,
Hohhot, China. Her current research interests include
indoor localization, crowdsourcing, wireless sensor
networks, and mobile computing.

Guoqiang Mao (Fellow, IEEE) is a leading professor,
founding director of the Research Institute of Smart
Transportation, and vice-director of the ISN State Key
Lab, Xidian University. Before that he was with the
University of Technology Sydney and the University
of Sydney. He has published 300 papers in interna-
tional conferences and journals that have been cited
more than 14,000 times. His H-index is 54 and is in
the list of Top 2% most-cited Scientists Worldwide
2022 by Stanford University, in 2022 and 2023. He
serves as a vice-director of Smart Transportation In-

formation Engineering Society, Chinese Institute of Electronics (2022-), and
was a co-chair IEEE ITS Technical Committee on Communication Networks
(2014-2017). He is an editor of IEEE Transactions on Intelligent Transportation
Systems (since 2018), IEEE Transactions on Wireless Communications (2014-
2019), IEEE Transactions on Vehicular Technology (2010-2020) and received
Top Editor award for outstanding contributions to the IEEE Transactions on
Vehicular Technology, in 2011, 2014, and 2015. He has served as a chair, co-chair
and TPC member in a number of international conferences. His research interest
includes intelligent transport systems, Internet of Things, wireless localization
techniques, wireless sensor networks, and applied graph theory and its applica-
tions in telecommunications. He is a fellow of AAIA and IET.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 11,2024 at 05:35:55 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


