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On the Fine-Grained Crowd Analysis
via Passive WiFi Sensing
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Abstract—Regarding the passive WiFi sensing based crowd anal-
ysis, this paper first theoretically investigates its limitations, and
then proposes a deep learning based scheme targeted for returning
fine-grained crowd states in large surveillance areas. To this end,
three key challenges are coped with: to relieve the influences of
the randomness and sparsity induced by passive WiFi sensing, an
attention-based deep convolutional autoencoder model is designed
to recover accurate crowd density maps in a way similar to image
reconstruction; to combat the anonymity caused by MAC random-
ization, following the identification of local high-density crowds
(LHDCs) with the density clustering algorithm, i.e., DM-DBSCAN,
a bidirectional convolutional LSTM based model is employed to
infer LHDC speeds; to overcome the absence of passive WiFi
sensing datasets for model training, three semi-synthetic datasets
are produced by emulating passive WiFi sensing with practical
pedestrian tracking datasets. Extensive experiments confirm that,
the proposed scheme significantly outperforms existing WiFi-based
methods in terms of crowd density estimation and provides superior
crowd speed estimation. More importantly, the scheme can also
produce consistent crowd states on a real-world dataset, revealing
that it has the ability to support accurate, visualized and real-time
crowd monitoring in large surveillance areas.

Index Terms—Crowd analysis, passive WiFi sensing, dataset,
crowd density regression, speed estimation.

I. INTRODUCTION

CROWD analysis, the study of how crowds are distributed
in space and move over time, is a key focus in research

communities [1]. It is crucial for various applications [2] such as
crowd management, traffic control, urban planning, and surveil-
lance. Recent stampedes in Itaewon, South Korea [3], and Kanju-
ruhan Stadium, Indonesia [4], highlight the importance of using
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crowd analysis to monitor emergency situations and implement
control operations to prevent accidents and casualties.

Existing crowd analysis studies can be divided into two
categories. First, the vision-based approach extracts crowd
state information from images or videos based on detection
or regression [5], [6], [7], [8], and suffers from high density
scenarios, limited coverage, complex cross-camera processing,
high deployment cost, and huge computational complexity [9],
[10]. Second, the wireless-based (or specifically WiFi-based)
approach infers crowd properties by leveraging the relationship
between wireless signals and crowd states [11], [12]. Therein,
the WiFi channel state information (CSI)-based approach can
achieve relatively high accuracy in crowd counting [13], [14],
but incurs high costs in obtaining CSI data, small deployment
space, and limited scalability; in contrast, the passive WiFi
sensing-based approach, which employs WiFi sniffers to pas-
sively sense nearby pedestrians via capturing probe frames sent
by their mobile devices, is most promising due to its advantages
of low cost, large coverage, and strong scalability [15], [16],
[17], and has been validated to be applicable [18], [19] even if
only limited accuracy can be obtained.

In specific crowd analysis tasks, estimating accurate and
comprehensive static crowd states, including crowd counts and
their spatial distribution, is still challenging. Most existing pas-
sive WiFi sensing-based methods were dedicated to improving
coarse-grained crowd counts [18], [19], [20], whereas some re-
cent researches gradually began to explore scenario-level crowd
density maps (CDMs) or heat maps [16], [18], [21] by fusing
sensing data and WiFi localization results, but suffered from both
the randomness and sparsity of passive WiFi measurements as
well as significant localization errors, and additionally, effec-
tive verifications and convincing evaluations are still missing.
Therefore, it is imperative to understand the limitations of crowd
density estimation and further develop effective methods to
estimate accurate CDMs via passive WiFi sensing.

Besides, crowd analysis also involves estimating crowd dy-
namics, e.g., crowd speeds. Even if existing WiFi-based methods
are capable of estimating pedestrian speeds in some specific
scenarios (e.g., one-way or two-way passages [16], [22]), it is
still difficult to deploy them in an arbitrary scenario.

In this paper, a theoretical analysis is conducted to investi-
gate the limitations of crowd analysis based on passive WiFi
sensing, motivating us to propose a novel fine-grained crowd
analysis scheme for large surveillance areas. To this end, three
key challenges must be addressed. First, since current mobile
devices often trigger not regular but occasional active scans
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with randomized MAC addresses [23], [24], random and sparse
passive WiFi sensing measurements are produced, and thus only
coarse-grained CDMs (termed WDMs) can be obtained using
existing methods. Inspired by the similarity between image
reconstruction and the recovery of CDMs from WDMs, an
attention-based deep convolutional autoencoder (ADCA) model
is developed to establish a fine-grained mapping between pixels
or patches in WDMs and those in corresponding CDMs by
effectively exploiting spatial-temporal information from WDMs
via convolutions, sufficiently enriching measurements from ran-
dom and sparse WDMs via autoencoder, and relieving the
influence of non-uniform localization errors cross the whole
surveillance area via attention mechanism and structural loss
function. Second, the usage of MAC randomization also results
in the anonymity of passive WiFi measurements, which makes
it difficult to continuously track pedestrians and calculate their
speeds. Therefore, we propose a DM-oriented density clustering
algorithm, i.e., DM-DBSCAN, to identify local high-density
crowds (LHDCs) from an estimated CDM, and a bidirectional
convolutional LSTM (BiConvLSTM) model to infer their speed
vectors by detecting their changes in space and time from a se-
quence of CDM patches (SCDMPs). Third, due to the extremely
high costs in labeling pedestrians’ states in large surveillance ar-
eas, labeled passive WiFi sensing datasets for crowd analysis are
still absent. As such, by grasping key rules of active scans, MAC
randomization and localization error distributions summarized
from abundant and complex real-world datasets, we propose to
emulate passive WiFi sensing in realistic pedestrian tracking
datasets as real as possible, producing three semi-synthetic
datasets for enabling the training and evaluating of proposed
models.

For the purpose of performance evaluation, we conduct
extensive experiments on semi-synthetic datasets and a real-
world dataset collected on our campus with the surveillance
area of about 4000 m2, respectively. The former confirms
that the proposed scheme significantly outperforms existing
WiFi-based methods for crowd density estimation, and can
achieve superior speed estimation with an average relative
error of velocity estimation less than 23% (37%) and an
average absolute error of direction estimation less than 18◦

(32◦) on two semi-synthetic datasets, respectively. The lat-
ter demonstrates that the proposed scheme is able to return
consistent estimation of crowd states, implying its applicabil-
ity in accurate, visualized and real-time monitoring of crowd
states.

To sum up, our main contributions are four-fold.
� We thoroughly analyse the limitations of passive WiFi

sensing-based crowd analysis in terms of crowd count and
location estimation from a theoretical perspective.

� We propose the ADCA model to sufficiently extract spatial-
temporal features from random and sparse passive WiFi
sensing data by adopting an image reconstruction ap-
proach.

� We infer crowd speeds according to the changes of crowd
densities based on density clustering and BiConvLSTM
model.

� We produce semi-synthetic passive WiFi sensing datasets
for crowd analysis after systematically investigating the
rules of active scan, MAC randomization and localization
error distributions in practice.

This paper is organized as follows. Section II surveys related
literature. Section III analyzes limitations of WiFi-based crowd
analysis. Section IV presents the fine-grained crowd analysis
scheme. Section V describes the synthesis process and semi-
synthetic datasets. Section VI shows the evaluation results, and
Section VII concludes the paper.

II. RELATED WORK

In this section, we shall briefly introduce the literatures of
vision-based and WiFi-based crowd analysis.

A. Vision-Based Crowd Analysis

According to the granularity of crowd analysis, the vision-
based methods can be divided into two categories. On the
one hand, early studies mainly focused on the task of crowd
counting [25]. The pixel-level and texture-level methods [26],
[27] aim to estimate the crowd count in a scenario, rather than
identify each individual, and can only achieve overall results. In
contrast, the object-level methods [28] can obtain more accurate
results by identifying individual, but are only suitable for sparse
scenarios, whereas line counting methods [29] count pedestrians
crossing a line of interest rather than the entire area, and thus
cannot thoroughly handle critical situations. On the other hand,
recent studies [1], [5], [6], [7], [9], [30] estimated comprehensive
crowd densities instead of crowd counts, but still suffered from
the problems of scale variation and limited video quality [8],
[31]. Besides, local perspectives generated by a camera cannot
be directly transformed into a global bird’s eye view (BEV),
imposing difficulties in evaluating the criticality of a crowd,
and more importantly it is still an open problem to understand
cross-camera scenarios [32].

In summary, it can be concluded that, in addition to the
traditional limitations, e.g., illumination conditions and com-
putational complexities, existing vision-based methods are also
restricted by large surveillance area, high crowd densities and
cross-camera collaboration.

B. WiFi-Based Crowd Analysis

Passive WiFi sensing benefits crowd analysis due to its advan-
tages of low cost, large coverage, scalability, and non-intrusive
detection [17]. First, most studies were focused on solving the
traditional crowd counting problem. In [19], field experiments
validated the feasibility of the passive WiFi sensing-based crowd
counting approach, but incurred a large higher error rate of over
30%. Similarly, [18] adopted WiFi sniffers with directional an-
tennas and video-based crowd counting method, which resulted
in an error rate of around 20%. Second, some recent studies
attempted to estimate crowd densities based on the number
and location estimates of sniffed devices. In [21] and [33], a
coarse-grained density estimation method was implemented by
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taking the number of sniffed devices as the crowd count and
positions of sniffers with maximum received signal strength
(RSS) measurements from corresponding devices as the crowd
location. Similarly, crowd heat maps can be initially generated,
and then refined in combination with different techniques, such
as linear calibrations [18], the prior knowledge of crowd dis-
tributions [34], and the accurate crowd count in each grid [16].
Third, some other studies inferred dynamic crowd states (e.g.,
crowd speeds) according to the location estimates of pedestrians
at different time in specific scenarios [16], [22].

To sum up, existing studies on passive WiFi sensing-based
crowd analysis have shown feasibility in practice, but are re-
stricted by relatively low accuracy. Particularly, crowd den-
sity estimation relies on simple treatments, and lacks standard
datasets and quantitative evaluations, while the crowd speed
estimation is limited to simple scenarios, and lacks generality.

III. LIMITATIONS OF CROWD ANALYSIS USING PASSIVE WIFI

MEASUREMENTS

We shall first introduce preliminaries of passive WiFi sensing,
then investigate the limitations of crowd analysis using passive
WiFi measurements from a theoretical perspective, and finally,
summarize the motivations.

A. Preliminaries on Passive WiFi Sensing

The traditional passive WiFi sensing-based crowd analysis
involves two key phases, i.e., the crowd sensing and WiFi
localization.

First, to effectively sensing crowds, a certain number of
WiFi sniffers are uniformly or automatically deployed [35] in a
surveillance area. When a sniffer starts to work, it will contin-
uously sense a probe frame from a surrounding mobile device,
extract valuable data including the transmitter’s MAC address
and RSS measurement, and upload this sensing data item (which
is appended with the current timestamp) to a server for further
processing. However, due to the existence of WiFi-disabled
devices, occasional active scans and MAC randomization, only
random and sparse passive WiFi measurements can be obtained,
making it difficult to estimate accurate crowd counts.

Second, to obtain the location of each sniffed device, WiFi-
based localization approaches [36] such as KNN and WKNN
can be employed to localize this device by using the RSS
measurements from different sniffers during a time window.
Advanced treatments, such as data cleaning, data filtering, and
location fingerprint optimization, can also be utilized to improve
the localization accuracy. However, the environmental dynamics
and pedestrian occlusions lead to severe multi-path effects,
making it difficult to estimate accurate crowd location.

In summary, the difficulties arising in the above two phases
make WDMs to significantly deviate from actual CDMs, with
the result that the passive WiFi sensing-based crowd analysis
becomes a challenging task. In what follows, we shall investigate
how these difficulties deteriorate WDMs from a theoretical
perspective.

B. The Influence of Limited Crowd Count Estimation
Accuracy on WDMs

Intuitively, passive WiFi measurements captured during a very
short period of time provide little useful information about the
corresponding crowd count due to their randomness and sparsity.
The common solution in the literature is to employ certain time
windows, in the sense that a longer time window provides much
more information but incurs larger granularity, and vice versa.
As such, given a time window, a probabilistic model is presented
to characterize the relationship between the crowd count and
passive WiFi measurements.

According to [16], a pedestrian, who carries a (mobile) device
and walks at a constant speed along a straight line during the time
window of t, can be sniffed with the probability of 1− e−ct,
where c = limΔt→0

q(Δt)
Δt and q(Δt) is the probability that a

device can be sniffed during Δt. Let random variable X denote
the number of times by which one device is sniffed during t.
Supposing a large natural number n, the observed time period
(0, t] is divided into n equal segments, namely

s1 =

(
0,

t

n

]
, s2 =

(
t

n
,
2t

n

]
, . . ., sn =

(
(n− 1)t

n
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]
. (1)

Thus, given si, the probability that the device is sniffed is q( t
n ) =

limΔt→0{1− [1− q(Δt)]
t

nΔt } = 1− e−
ct
n ; with n increasing,

the probability that the device is sniffed twice or more tends to
be 0, and the probability that the device is not sniffed is simply
1− q( t

n ) = e−
ct
n . Since a sniffer independently sniffs a device

every time, thus

P (X = i) =
(
n
i

) (
1− e−

ct
n

)i (
e−

ct
n

)n−i

. (2)

When n → ∞, we can obtain

e−
ct
n → 1− ct

n
,

(
n
i

)
n!

→ 1

i!
,
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→ e−ct. (3)

Therefore, the probability that the device is sniffed i times in t
is

P (X = i) =
e−ct(ct)i

i!
. (4)

It is evident that X follows a Poisson distribution with the in-
tensity of ct, and particularly, the probability that the device can
be sniffed is P (X ≥ 1) = 1− P (X = 0) = 1− e−ct, which
conforms to the original derivation in [16].

In practice, however, the residence time of a pedestrian is often
not strictly equal to t when he/she is just entering in or leaving
out a surveillance area, such that we denote the actual residence
time of the ith pedestrian as ti. Meanwhile, considering the
fact that a pedestrian may carry multiple devices and MAC
randomization makes one device to be counted multiple times, it
is straightforward to obtain that the expected number of sniffed
devices can be as large as

∑nc

i=1 bcti (where b denotes the
expected number of devices carried by one pedestrian [16]),
which is unequal to the crowd count nc. Since the residence
time of each pedestrian differs with the passing area, pedestrian’s
speed and status, and etc., either the global or any local WDM
will be significantly different from its corresponding CDM,
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and more importantly, the mapping from any pair of WDM to
its corresponding CDM might be different. Therefore, directly
assigning a WDM to a CDM [21], [33] or uniformly mapping
each WDM to its corresponding CDM [18], [19] will attain poor
performance.

C. The Influence of Limited Crowd Location Estimation
Accuracy on WDMs

It is evident that large localization errors inevitably result in
significantly inaccurate crowd density distributions in WDMs,
which shall be investigated from a theoretical perspective in the
following.

Define l = [x, y] ∈ R2 as the true position coordinate of a
sniffed device, r = (r1, r2, . . ., rm)T as the vector of mean
RSS measurements from m sniffers in dBm, and δr = (δr1,
δr2, . . ., δrm)T as the measurement noise vector which is as-
sumed to be independent Gaussian with zero means and co-
variance matrixΣ = diag(σ2

r1
, σ2

r2
, . . ., σ2

rm
) [37], such that the

actual RSS measurement, denoted r̂, is equal to r+ δr. Let
g(·) = (gx(·), gy(·))T : Rm → R2 be the mapping from RSS
measurements to a location estimate by using any localization
algorithm, where gx(·) and gy(·) are the mappings in x-axis
and y-axis, respectively. Without loss of generality, the localiza-
tion algorithm is supposed to satisfy l = g(r), and when only
RSS measurements are input, we can have l̂ = g(r̂), namely
l+ δl = g(r+ δr) [38], where δl denotes the localization error.

Supposing that g(·) is differentiable and δx is the localization
error in x-axis, after applying the Taylor expansion on gx around
r and ignoring higher order items, we can obtain

x+ δx ≈ gx(r) +

m∑
i=1

∂gx
∂ri

δri

+
1

2!

m∑
i=1

m∑
j=1

δriδrj
∂2gx
∂ri∂rj

, (5)

and thus

δx =
m∑
i=1

∂gx
∂ri

δri +
1

2!

m∑
i=1

m∑
j=1

δriδrj
∂2gx
∂ri∂rj

. (6)

Since the noises in RSS measurements are independent Gaus-
sian, the expectation of δx is

E(δx) =
1

2!

m∑
i=1

σ2
ri

∂2gx
∂r2i

. (7)

Similarly, the expectation of δy is

E(δy) =
1

2!

m∑
i=1

σ2
ri

∂2gy
∂r2i

. (8)

It follows from (7) and (8) that, the localization errors are
mainly dependent on the magnitudes of the derivatives, which
differ cross different locations and sniffers, and in general, since
different locations incur different multi-path effects, different
derivatives will be generated, such that the errors in location
estimates as well as WDMs are often non-uniform cross the
whole localization area. Consequently, such non-uniform errors

in WDMs will result in severely wrong distributions of crowd
density and make it hard to identify critical situations.

D. The Motivations of Our Work

In light of the above analyses, the motivations of our crowd
density and speed estimation methods are presented as follows.

1) Crowd Density Estimation: Deficiencies of existing WiFi-
based crowd density estimation motivate us to make improve-
ment from the following two aspects. First, both simple crowd
counts and coarse heat maps generated by the average count in
each local region cannot precisely depict crowd distributions,
which motivates us to work on informative density maps. Sec-
ond, original WDMs or those calibrated by a uniform map-
ping significantly deviate from the corresponding CDMs due
to the randomness and sparsity of passive WiFi sensing and
non-uniform localization errors, which motivates us to develop
an advanced CDM regression method. To be specific, by making
use of the similarities between image reconstruction and the
recovery of CDMs from WDMs, such as de-noising, compen-
sation and correction, the state-of-the-art deep learning tech-
niques [39], [40] can be utilized to effectively extract spatial-
temporal features from WDMs via convolutions, sufficiently
enrich measurements from random and sparse WDMs via au-
toencoder, and relieve the influence of non-uniform localization
errors cross the whole surveillance area via attention mechanism
and structural loss function, such that a fine-grained mapping
between pixels or patches in WDMs and those in corresponding
CDMs can be established.

2) Crowd Speed Estimation: It is crucial to grasp the speeds
of all crowds for detecting possible emergencies, but due to MAC
randomization, it is hard to track any single pedestrian, such
that crowd speed estimation is a challenging task. Alternatively,
according to CDMs returned by the above crowd density esti-
mation, one can track some identifiable crowds, so as to estimate
their speeds. Specifically, pedestrians often gather in different
groups, forming crowds, with the result that the corresponding
CDM includes some patches with high densities, so that one can
identify the LHDCs in this CDM using any density clustering
algorithm and further easily estimate their speeds by detecting
their changes in space and time.

IV. FINE-GRAINED CROWD ANALYSIS SCHEME

In this section, we shall present the overview and design
details of the proposed fine-grained crowd analysis scheme.

A. Overview

As shown in Fig. 1, the proposed scheme includes three mod-
ules, i.e., the WDM generation module, crowd density regression
module and speed estimation module. First, a fixed Gaussian
kernel function [41] is utilized to generate coarse WDMs based
on the traditional sensing and localization results. Second, the
ADCA model is designed to reconstruct CDMs from WDMs,
an attention mechanism and a fusion loss is applied to improve
its feature extraction and local consistency learning capabilities
and additionally, to combat with the difficulty in labeling CDMs,
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Fig. 1. Overview of the proposed fine-grained crowd analysis scheme.

a transfer learning method is proposed based on fine-tuning
the pre-trained model. Third, given a CDM, SCDMPs are con-
structed based on the LHDCs identified by density clustering,
and further utilized to regress the speed vector of each LHDC
by on a BiConvLSTM model.

B. The Generation of WDM

Assume that the shape of a relatively large surveillance area
is rectangular, because any shape can be included in a bounding
box. First of all, we need to transform continuous physical
coordinates to discrete image coordinates in pixels, and for ease
of processing, a 1 m × 1 m square is transformed to a single
pixel in a WDM throughout this paper. By letting nw be the
number of sniffed devices, L̂ = {̂l1, l̂2, . . ., l̂nw

} be the set of
their location estimates and P = {p1, p2, . . ., pnw

} be the pixel
set transformed from L̂, an image I can be generated as follows

I(p) =

nw∑
i=1

δ(p− pi), (9)

where δ is the impulse function. Then, the WDM can be obtained
through convolving and smoothing I with a Gaussian kernel
function with the size ks, i.e.,

WDM(p) = I(p) ∗Gσ(p), (10)

Gσ(p) = exp

(
−||p− pi||2

2σ2

)
, (11)

where Gσ(p) is the Gaussian kernel function and σ is the stan-
dard deviation. The parameters ks and σ reflect the impact of a
sniffed device on surrounding density values, and are empirically
set as 10 < ks < 20 (odd) and σ = 1. As a result, a WDM with
the size of H ×W is obtained, where H and W are the height
and width of the WDM, respectively.

C. ADCA-Based CDM Regression

Considering the 2-D nature of CDM regression, the ADCA
model is designed based on the deep convolutional autoen-
coder [42], as shown in the middle of Fig. 1.

1) Overall Architecture: The model consists of an encoder
for extracting valid latent features and a decoder for recovering
CDMs. We combine the 3× 3 convolutional layer, activation
function and batch normalization (BN) as a base block. The
convolutional layer can preserve spatial locality by sharing
weights, and the latent representation of kth feature map is given
by

hk = ReLU(hk−1 ∗Wk + bk), (12)

where the bias bk is broadcasted to the whole map, ReLU
activation function is used for avoiding gradient disappearance,
∗ denotes the 2-D convolution, andWk is the flip operation over
dimensions of weights in the kth layer. The BN is added after
each convolutional layer to improve training speed and reduce
overfitting [43]. In total, ten base blocks are employed to extract
latent features at different scales. Two max-pooling layers are
embedded into the encoder to eliminate redundant features and
reduce computations, and two bilinear interpolation upsampling
layers are accordingly utilized in the decoder to recover the size.
As a result, we keep the outputted CDM to have the same size as
the original WDM, and ensure that the density value of each pixel
is greater than or equal to 0 by the last ReLU. To sum up, the deep
architecture enables the model with a strong learning capability,
and the full-convolution design allows accepting inputs with
an arbitrary size, facilitating the model to be applied in new
scenarios without structural adjustment.

2) Attention Mechanism: Three lightweight convolutional
block attention modules (CBAMs) [44] are added into the model
so as to simultaneously combine the channel and spatial domain

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 11,2024 at 05:36:12 UTC from IEEE Xplore.  Restrictions apply. 



6702 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

attentions. The former focuses on the meaningful information in
input features, identifies and amplifies the importance of a single
feature map extracted by different convolution kernels. The latter
concerns more on the location information of the crowd density
distributions. As a result, each of the three CBAMs can generate
attentional maps in both channel and spatial dimensions, which
are then sequentially multiplied with the original feature map to
adaptively enhance features at different locations and scales.

3) Fusion Loss Function: Most existing image regression
methods use the pixel-wise mean square error (MSE) loss to train
their models, which relies on the pixel-dependent assumption
and ignores the local consistency of DMs [45]. As such, we
fuse the MSE loss with the structural similarity index measure
(SSIM) which is employed to evaluate local pattern consistency.
First, the pixel-wise MSE loss is defined as

Lmse =
1

N
||F (X;Θ)−Y||22, (13)

where F (X;Θ) denotes the CDM estimated by the ADCA
model with parameters Θ, X and Y represent the WDM and
ground-truth (GT) CDM, respectively, and N = HW is the
number of pixels in a DM. Second, the SSIM [46] between the
estimated and GT CDMs is calculated as follows

SSIM(p) =
(2μF (p)μY (p) + C1)(2σFY (p) + C2)

(μ2
F (p) + μ2

Y (p) + C1)(σ2
F (p) + σ2

Y (p) + C2)
,

(14)
where p is an arbitrary pixel in DMs, μF (p) and σ2

F (p) are the
local mean and variance of F , respectively, σFY (p) is the local
covariance, and C1 and C2 are small constants used to avoid
dividing by 0. Since the SSIM is positively correlated with local
consistency, we define the loss as

Lssim = 1− 1

N

∑
p

SSIM(p). (15)

Finally, by weighting the above two losses, the fusion loss
function is

Lfusion = Lmse + αLssim, (16)

where α is the weight to balance Lmse and Lssim, and is
empirically set as 0.1 in experiments. Intuitively, Lssim is used
to guarantee the shape similarity between crowd density dis-
tributions, while Lmse is used to improve the accuracy of the
density estimation.

4) Transfer Method: In practical applications, labeling
global and accurate CDMs is very hard due to the high cost,
so that it would be attractive if the trained ADCA model could
be used in a target environment. However, the model learns
scenario-specific knowledge to boost the estimation perfor-
mance in a specific environment, and thus cannot be directly
generalized to other environments. As such, based on the idea of
reducing the gap between source and target domains, we propose
to transfer a model pre-trained in semi-synthetic datasets to any
actual dataset with a few labels by means of spatial transforma-
tions.

1) Data Scaling: Due to the differences in the geometric size
and coordinate setting, crowds in the source and target datasets
have different distribution ranges. DefineS as the scaling vector,

and thus the location of a pedestrian in the source dataset
ls = [xs, ys]

T can be transformed to lt = lsS in the target

dataset, i.e., lt = [xt, yt]
T , where S = [x

max
t −xmin

t

xmax
s −xmin

s
, ymax

t −ymin
t

ymax
s −ymin

s
].

2) Data Augmentation: To further mitigate the difference
between crowd distributions in the source and target datasets, the
euclidean transformation is used to augment the scaled dataset.
Let R be a rotation matrix, and thus the location of a pedestrian
in the scaled dataset lt can be transformed to la = Rlt in the
augmented dataset. Other transformations, such as reflection,
can also be used for augmentation.

3) Fine-tuning: The augmented dataset can be directly used
to pre-train a model, but the performance may be poor due to the
inevitable complex and scenario-specific factors, such as crowd
distributions and RSS measurement noises. Therefore, using a
few labeled data, the pre-trained model can be fine-tuned via
fixing the encoder and using a reduced learning rate, so as to
improve its robustness.

5) Discussions on the Improvement: The advantages of our
treatments mainly lie in the following two aspects.

1) Fine-grained crowd counts are estimated by establishing
local non-linear mappings. Supposing that the residence time
of each pedestrian is t, the expected number of sniffed devices
is E(nw) = bctnc = anc, where a = bct. In [21], [33], E(nw)
is directly used to approximate the crowd count nc, resulting
in large errors, whereas in [16], [18], [19], [34], a constant
coefficient a′ is estimated to approximate 1

a , such that the crowd
count can be approximated by a′E(nw). However, the uniform
coefficient a′ will incur large errors in the resulting crowd counts
of most local regions due to the spatial diversity of the pedes-
trian residence time. In contrast, we transform original WiFi
measurements into an image-like WDM to maximally reserve
the spatial diversity, and establish local non-linear mapping set
F (WDM;Θ) in pixel level (or patch level) through the train-
ing process argminΘ[Lfusion(F (WDM;Θ),CDM)], which
implicitly considers different t in different local regions.

2) The localization errors are mitigated with the model. Most
existing methods in [16], [18], [21], [33] did not handle the
coarse crowd location estimation, whereas the method in [34]
tried to improve location estimation by using two independent
global Gaussian mixture models (GMMs) based on prior crowd
distributions in x-axis and y-axis directions, but such simple
treatments do not make obvious difference. In contrast, our
model connects a pixel in a WDM to its surrounding and even
more distant pixels in the corresponding CDM, weighs the
importance of each connection that reflects the non-uniform
localization error, and finally mitigates the influences of different
localization errors through measuring the local inconsistency by
the fusion loss involving SSIM in the training process.

D. BiConvLSTM-Based Crowd Speed Estimation

We shall briefly describe the key components of the proposed
crowd speed estimation method.

1) The Identification of LHDCs: A density based spatial
clustering algorithm, termed DM-DBSCAN, is proposed to
identify LHDCs from an estimated CDM based on the well-
known DBSCAN [47]. The DM-DBSCAN involves two major
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modifications in comparison with the original DBSCAN. First,
every pixel in a given CDM functions as a data point and the
pixel coordinate defines its spatial coordinate, such that the pixel
distance threshold εp is defined to identify the neighborhood
of a point based on the euclidean distance between pixel co-
ordinates. Second, deciding whether a point is a core point by
thresholding the sum of the densities of all the points in the
neighborhood, such that the density threshold of any point is
defined asMinDes. Finally, the central pixel coordinate of each
LHDC is obtained by rounding the mean coordinate among each
cluster.

2) The Construction of SCDMP: Given the central pixel
coordinate of a LHDC, a CDM patch with the size of Np ×Np

(where Np is the height or width in pixel of the patch) is cropped
form the corresponding location of the CDM. Set the sequence
length as sl, CDMs at previous sl − 1 moments are cropped
at the same location, and all patches are stacked together to be
an sl ×Np ×Np SCDMP. In the case of overlapping with the
boundary, the corresponding elements are filled with 0 to ensure
dimensional consistency. The usage of CDM patches helps to
remove redundant information and reduce calculations.

3) The Proposed BiConvLSTM Model: Considering the fact
that the forward and reverse density changes of a crowd are
closely related to the speed of this crowd, the BiConvLSTM
model is adopted to capture the spatial correlation in relation to
a 2-D CDM patch via convolution and balance the importance
among patches at distant and recent moments. Specifically, a
lightweight BiConvLSTM model is designed by including two
ConvLSTM layers consisting of 16 3× 3 convolutional kernels
for extracting sequential features and a fully-connected layer for
regressing speed vectors. The input is the SCDMP associated
with a LHDC, and the output is the speed vector v̂ = (v̂x, v̂y)

T

of the LHDC. As for the training, the traditional MSE loss which
actually equals to the speed error is adopted and the Adam
optimizer is utilized. Finally, the model trained on the source
dataset can be directly transferred to a target dataset by using the
SCDMPs with the same size due to the similar crowd densities
and location changes of different LHDCs in two datasets.

V. SEMI-SYNTHETIC DATASETS FOR PASSIVE WIFI

SENSING-BASED CROWD ANALYSIS

In this section, we shall first investigate the key rules gov-
erning passive WiFi sensing from real-world datasets, and then
present how to produce semi-synthetic datasets by emulating
passive WiFi sensing in existing pedestrian tracking datasets.

A. Learning From Real-World Public Datasets

Prior to emulating passive WiFi sensing, it is a prerequisite to
understand how active scans are triggered, how MAC addresses
are randomized, and how localization errors are distributed. To
this end, we attempt to learn the key rules from several real-word
public datasets.

1) Active Scan and MAC Randomization Rules: To find out
the rules of determining time intervals between two adjacent ac-
tive scans and randomizing a MAC address, a recent dataset [48]
for MAC de-randomization is adopted. This dataset contains

WiFi probe frames sent by 22 mobile devices with 6 major brands
and under the standby status in a shielded environment, and a
thorough analysis concludes three modes of triggering active
scans and three modes of MAC randomization, respectively.

The modes of triggering active scans: 1) Fixed Interval: In
this mode, one device triggers any two active scans with a
fixed interval, so that given a specific device emulated in the
semi-synthetic dataset, its interval is randomly sampled from a
uniform distribution, i.e., Ifi ∼ U(lfi, ufi), whose upper bound
ufi and lower bound lfi are determined by the union of all fixed
intervals. 2) Periodic & Ascending Interval: In this mode, the in-
terval gradually ascends within a specific range and repeats again
after reaching the maximum of the range, which is emulated by
designing an algorithm to produce a sequence of increasing time
intervals. 3) Random Interval: In this mode, the interval appears
to be random within a range, which is emulated by sampling
from a uniform distribution U(lrr, urr).

In addition, a small white Gaussian noise is added to each
emulated interval to reproduce sensing delays and performance
limitations of sniffers. Some typical and emulated intervals are
shown in Fig. 2, which intuitively demonstrates the effectiveness
of our emulation for each mode. In semi-synthetic datasets, a
discrete probability distribution determined by the proportion
of each mode device is used to decide which mode an emulated
device belongs to.

The modes of MAC randomization: 1) Non-Randomization or
Long Period: In this mode, one device either uses its real MAC
address or only uses one randomized MAC address during a
relatively long period of time, such that corresponding passive
WiFi sensing data can be easily categorized to one common
device. 2) Randomization at Every Active Scan: In this mode,
every active scan uses a newly randomized MAC address.
3) Randomization in Each Channel: In this mode, every active
scan uses different randomized MAC addresses across different
channels.

Considering the fact that only few old devices adopt the
first mode and the third mode is essentially the same as the
second mode given sniffers working in one channel, only
the second mode is emulated in producing semi-synthetic
datasets.

2) Empirical Distributions of Localization Errors: To estab-
lish the relationship between error distributions and correspond-
ing scenario configurations, localization errors are investigated
by using five public datasets [36], [49], i.e., LAB, OFFICE,
CETC, HCXY and SYL, and one self-collected dataset WiCAM
(see Section VI-A). The training data in each dataset is used to
generate location fingerprint database. Then, the testing data in
each dataset is used to perform localization by using the KNN
algorithm, in which the value of k is tuned according to different
datasets to achieve optimal performance. Finally, the means and
standard deviations of localization errors in both x-axis and y-
axis, denotedμx, σx, μy andσy, are calculated, so as to better re-
spectively investigate the localization error characteristics in two
axes. As shown in Fig. 3, it can be found that the histograms of lo-
calization errors are in good consistence with the corresponding
empirical Gaussian probability density functions (PDFs) in three
datasets.
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Fig. 2. Three different modes of triggering active scans (real devices in the first row and emulated devices in the second row).

Fig. 3. Histograms of localization errors and the corresponding empirical PDFs of three datasets.

TABLE I
PARAMETERS OF LOCALIZATION ERROR DISTRIBUTIONS AND KEY SETUPS OF THE TESTBED IN EACH DATASET (THE EMULATED VALUES ARE IN BOLD)

More detailed information is summarized in Table I, where the
area specifies the coverage area of each testbed; Δx and Δy de-
note the maximum absolute difference between the coordinates
in x-axis and y-axis, respectively; AP number is the number of
APs/WiFi sniffers deployed, and AP density is the ratio of the AP
number to the area. It can be found that, the localization errors in
both axes do not scale with the area, but often decrease with the
AP density increasing and Δx or Δy decreasing, which would
guide us in determining the emulation parameters given the
scenario configurations of existing pedestrian tracking datasets.

B. Emulations in the Semi-Synthetic Datasets

In order to produce semi-synthetic datasets, the following
two pedestrian tracking datasets [50], [51] are employed to
provide the precisely labelled trajectory of every pedestrian: the
DIAMOR dataset, which was collected by using laser range
finders in two large straight corridors connecting the Diamor
shopping centre in Osaka, Japan, and the ATC dataset, which
was collected by using 3-D range sensors in part of the ATC
shopping and business center in Osaka, Japan. Both datasets
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Fig. 4. Emulation of passive WiFi sensing in the semi-synthetic datasets.

include items of timestamp, pedestrian ID, position, speed, and
etc.

To synthesize the datasets, a divide-and-conquer approach is
employed to emulate corresponding passive WiFi sensing data
with the real data of each pedestrian, as shown in Fig. 4. First,
the GT positions and speeds of crowds are generated by: 1)
divide the whole time into slices with a fixed length, denoted
δt; 2) in each slice of time, average the position, velocity and
direction of every pedestrian, so as to reduce the influence of
noises, or interpolate corresponding data of any pedestrian who
was not detected; 3) calculate the mean speed vector of every
LHDC detected from a given CDM by using the velocities and
directions of all pedestrians residing in the central point of this
LHDC. Second, the passive WiFi sensing data is generated by:
1) extract GT positions of each pedestrian by his/her ID in
every slice of time; 2) for each pedestrian, generate a list of
time slices in which an active scan is triggered according to the
emulation method in Section V-A1, and remove the data in the
time slices in which the active scan is not triggered; 3) randomize
the pedestrian ID in each of the remaining slices to emulate
MAC randomization; 4) sample localization errors based on the
emulated error distribution, and add them with GT positions in
every slice of time.

Based on above two algorithms, the passive WiFi sensing data
can be emulated for both DIAMOR and ATC datasets, resulting
in the semi-synthetic datasets, termed WiDIA and WiATC,
respectively. Besides, a densified dataset, termed WiDATC, is
produced based on WiATC.

WiDIA: A total of 37,750 seconds of pedestrian tracking data
collected in 2 days [51] are synthesized. By using the sliding time
window with the window size ΔT = 30 s and the step δt = 1 s
and the Gaussian kernel with ks = 11 andσ = 1, 37,692 pairs of
WDM and CDM with the size ofH ×W = 24× 68 are derived.
For the purpose of estimating crowd speeds, DM-DBSCAN is
executed with εp = 2.9 and MinDes = 5 to identify a total of
4,937 LHDCs, and corresponding pairs of SCDMP and speed
vector.

WiATC: A total of 92,160 seconds of pedestrian tracking data
collected in 6 days [50] are synthesized. The same sliding time
window and Gaussian kernel as in WiDIA are used to obtain
91,464 pairs of WDM and CDM with the size of H ×W =
64× 96. Likewise, DM-DBSCAN with a strict MinDes = 9
is executed due to the relatively high crowd densities in the

ATC dataset, so as to identify a total of 7,861 LHDCs and
corresponding pairs of SCDMP and speed vectors.

WiDATC: By stacking the aligned 4 hours data per day of the
ATC dataset into one hour, we obtain 22,866 pairs of WDM and
CDM with the same size as WiATC.

In summary, the above emulation of passive WiFi sensing
based on insightful analyses of real-world datasets conducted
in the previous subsection, in combination with the real-world
pedestrian tracking datasets, makes it both suitable and feasible
to support further crowd analyses. However, since the emulation
takes into account noises in localization results, it is unnecessary
to directly emulate the multi-path propagation of WiFi signals.

VI. EVALUATION

In this section, extensive experiments are conducted to verify
the effectiveness and practicality of the proposed crowd analysis
scheme based on three semi-synthetic and a real-world datasets.

A. WiCAM: A Realistic Crowd Analysis Dataset

WiCAM was collected on a square with the area of around
10, 000m2, which is located between several teaching buildings
and where several pedestrian walkways and roads connect these
buildings. Fourteen Raspberry Pi 3B+ are customized as WiFi
sniffers, and uniformly deployed on the walkways, roads and
open spaces, as the surveillance area, with the total area of
4, 000m2. In the offline stage, a path-based fingerprint collection
method [52] was employed to quickly collect RSS fingerprints
from over 300 locations. In the online stage, after preprocessing
the sensing data in the sliding time window with ΔT = 30 s
and δt = 1 s, the RSS fingerprint vector associated with one
MAC address is produced and further used for localization by the
KNN algorithm with k = 3. Meanwhile, five time-synchronized
smartphones were deployed as cameras to cover the whole
surveillance area, such that crowd counts are manually labelled
given one video frame per second. At last, totally 2, 280 s sensing
data including a peak time, i.e., after classes, and corresponding
crowd counts were obtained. Besides, the Gaussian kernel with
ks = 15 and σ = 2 is used to derive 2,280 WDMs with the size
of H ×W = 140× 80, and only 60 randomly selected CDMs
are labeled due to the difficulty in labeling. DM-DBSCAN with
εp = 2.9 and MinDes = 3.8 is employed to identify LHDCs.

B. Baselines and Metrics

Four existing methods are adapted as baselines to estimating
crowd densities on all datasets: 1) Early AP Location-based
method (APL) [21], [33] simply assigns the position of a nearest
sniffer to that of a sniffed device; 2) Calibration Factor-based
method (CF) [18] corrects WDMs by multiplying a calibration
factor obtained through fitting the number of sniffed devices
to the crowd count using training data; 3) Priori knowledge
(CF+PK) [34] further corrects the density distribution by two
GMMs learned from all pedestrians’ real positions; 4) Sequential
Filtering based method (SF) [16] partitions the surveillance
area into 4 m × 4 m grids and estimates the crowd density of
each grid. Besides, the traditional stacked autoencoder (SAE)
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TABLE II
CROWD DENSITY ESTIMATION RESULTS OF ALL METHODS ON THREE SEMI-SYNTHETIC DATASETS

model, ADCA without the attention mechanism (ADCA w/o
CBAM), trained with the MSE loss (ADCA with Lmse) and
SSIM loss (ADCA with Lssim) are also taken for comparison.
All semi-synthetic datasets are divided in a Hold-out manner,
with 50% as training data and the remainder as test data. All
deep learning models are trained by Adam in 300 epoches with
the learning rate of 0.001.

Due to the absence of crowd speed estimation methods suit-
able for passive WiFi sensing, several commonly used sequential
models including RNN, LSTM and ConvLSTM with a similar
three-layer structure are adopted as baselines to confirm the
effectiveness of our method. All models are trained by Adam
in 200 epoches with the learning rate of 0.001. SCDMPs are
constructed with Np = 17 and sl = 10 by default, and a similar
partitioning scheme is adopted.

The following seven commonly used metrics are utilized
for evaluating crowd density estimation: two image metrics
including peak signal-to-noise ratio (PSNR) and Normalized
SSIM (NSSIM ) for measuring the overall quality; traditional
pixel-wise root MSE (RMSEp); two crowd counting metrics
including mean absolute error (MAEc) and MSE (MSEc) for
measuring the global crowd density; two composite indicators
including patch absolute error (PAE) and patch square error

(PSE) [5] for simultaneously measuring the density and its
spatial distribution by dividing a CDM into 24 patches. As for
speed estimation, the mean absolute percentage error of velocity
(MAPEv), the MAE of motion angles (MAEd) and the RMSE
of speed vector (RMSEs) are utilized to measure the accuracy
in terms of the magnitude, direction and synthesis, respectively.

C. Validating the Accuracy of Crowd Density Estimation

The crowd density estimation results of all methods on all
semi-synthetic datasets are listed in Table II. In combination with
the analyses in Section III, it can be found that: APL results in the
worst performance, probably due to the ignorance of the limita-
tions of passive WiFi sensing; CF and SF attempt to mitigate the
influence of the limitation on crowd count estimation, but are still
restricted by the inaccurate crowd location estimation; CF+PK
further uses the priori knowledge in one scenario to correct
location estimates, but is only effective for small and regular
scenarios; SAE appears to mitigate the influence of these two
limitations to a certain extent, but the limited learning capability
leads to difficulties in extracting spatial-temporal features be-
tween 2-D DMs; ADCA outperforms all baselines by overcom-
ing the aforementioned challenges, and has the best performance
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Fig. 5. Visualized crowd density estimation of a randomly selected test sample in each dataset.

TABLE III
ABLATION STUDIES OF CROWD SPEED ESTIMATION ON TWO SEMI-SYNTHETIC DATASETS

on the fine-grained crowd density estimation. Moreover, ablation
studies in the table show that the attention mechanism and fusion
loss are effective and necessary. Particularly, it is possible to
achieve better performance using Lssim only, which leads to a
drastic fluctuation in loss values or even failure to converge on
complex WiATC dataset. In contrast,Lfusion retains advantages
of bothLmse andLssim, and can optimize both densities of local
pixels and the global structural consistency of a CDM.

The visualized crowd density estimation results of a randomly
selected test sample in each dataset are shown in Fig. 5, and
intuitively confirm the above discussions. Moreover, additional
conclusions can be drawn: the accuracy of CDMs estimated by
APL depends on the number and location of sniffers; the CDMs
estimated by CF and CF+PK evidently deviate from the GT
CDMs, in that the existing intensive crowds cannot be reflected,
which is probably caused by the significant localization errors;
SF uses a simple density representation which makes it unable
to distinguish dense crowds; SAE can learn crowd distributions
and smooth the density estimation, but fails to distinguish
different densities; the CDMs estimated by ADCA has the most
similar shapes with the GTs and can effectively distinguish
different densities.

D. Validating the Accuracy of Crowd Speed Estimation

The crowd speed estimation is only tested on WiDIA and
WiATC datasets as shown in Table III(a), because the WiDATC
dataset virtually puts the pedestrians at different times together

and incurs conflicts of crowds moving in different directions.
As can be seen, various sequential models can obtain acceptable
speed estimation results. Specifically, the performance increases
from RNN, LSTM, ConvLSTM to BiConvLSTM, revealing
that: LSTM can reasonably balance the importance of features
at distant moments with that of recent moments; convolutions
facilitate the effective capturing of spatial correlations among
2-D patches; the combination of forward and backward density
changes is helpful to improve speed estimation; the proposed
model, i.e., BiConvLSTM, achieves a competitive estimation
error of about 23% (37%) in velocity and less than 18◦ (32◦)
in direction on the WiDIA (WiATC) dataset, confirming the
feasibility and potential of our speed estimation idea.

To further investigate the influence of different parameters on
speed estimation, another two ablation studies are conducted, as
listed in Table III(b) and (c). It turns out that, on both datasets, the
performance increases with the sequence length sl increasing,
but slightly degrades after sl is beyond 14. Similar phenomenon
can be observed in regards to the patch size Np. However, since
the large values of sl and Np lead to high training costs, it is
empirically suggested that sl = 10 and Np ×Np = 17× 17 in
the experiments.

E. Investigating the Influence of Localization Errors

In practical applications, the diversities of scenarios (e.g., the
size, obstacles and multi-path effects), users’ own occlusions
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Fig. 6. Influence of localization errors on crowd analysis results, where (a) and (b) are the two comprehensive metrics for crowd density estimation with the
scaling factor β increasing, and (c) is the CDFs of RMSEs of crowd speed estimation with respect to different values of β.

(e.g., pockets, knapsacks and handbags), different deployments
of sniffers, and limitations of localization methods together lead
to localization errors with different magnitudes. As such, it is
necessary to investigate the influence of different magnitudes
of localization errors on crowd analysis. To this end, define
β to be the scaling factor, such that reducing (0 ≤ β < 1) or
increasing (β > 1) localization errors in a semi-synthetic dataset
can be easily realized by letting β take values from (0,1) and
(1,+∞), namely that, the localization error distributions in both
axes become N ′

x(β × μx, β × σx) and N ′
y(β × μy, β × σy).

The WiATC dataset which involves more data than WiDIA is
used for test by re-synthesizing with different values of β. With
β increasing, the two comprehensive metrics (i.e., NSSIM and
PAE) of all methods for crowd density estimation are shown
in Fig. 6(a) and (b), and the cumulative distribution functions
(CDFs) of RMSEs of the proposed speed estimation method is
shown in Fig. 6(c).

The figures intuitively indicate that: 1) the crowd density
estimation performance of all methods become worse with
localization error increasing; 2) different methods incur different
degrees of performance reduction, but the ADCA is only slightly
affected, indicating that our method is able to learn the local-
ization error distribution through its connectivity characteristic
and thus mitigate the impact of localization errors to some
extent, as was discussed in Section IV-C5; 3) all the CDFs of
RMSEs under different values of β almost overlap, which is
attributable to the fact that our speed estimation method mainly
relies on accurate CDMs, such that slight degradation in the
quality of estimated CDMs caused by larger localization errors
do not significantly impair its accuracy. Note that the slight and
inconsistent differences between CDFs are probably caused by
the randomness in the processes of re-synthesizing the dataset
and initializing the BiConvLSTM model.

F. Validating the Practicality on Real-World Dataset

A random timeT is selected for visualization and presentation
of crowd density estimation. Four cameras are selected to show
the key areas and the GT crowd count in each area, as shown
in Fig. 7(a), and accordingly, the manually labeled GT CDM

is illustrated in Fig. 7(b). The best baseline, i.e., CF, is imple-
mented (see Fig. 7(c)), in which CDM is relatively scattered and
only contains two LHDCs that are seriously inconsistent with
the GT. We randomly select 1000 training samples from each
semi-synthetic dataset and directly transfer the trained model
to WiCAM (see Fig. 7(d)), resulting in the reduction of scat-
tering but keeping the similar shape. Fig. 7(e) and (f) show the
CDMs estimated by the ADCA pre-trained with above samples
after data scaling and augmentation, and the pre-trained model
fine-tuned with 10 labeled CDMs, respectively. Apparently, the
former can learn generic knowledge to correct crowd densities
and thus to identify more LHDCs, while the latter can learn
scenario-specific knowledge from labeled samples to achieve
more accurate crowd counts and locations.

In addition, we also test them with 30 labeled test samples
and summarize the results in Table IV, where the fine-tuned
cases include using different numbers of training samples. It
can be found that: except for global crowd counting, the directly
transferred and pre-trained models outperform the baseline on
most metrics, demonstrating the superiority of our method for
fine-grained crowd density estimation; fine-tuned models can
significantly boost the accuracy, and particularly, the more train-
ing samples are used, the better performance is obtained.

For crowd speed estimation, three LHDCs are identified by
DM-DBSCAN, and the speed estimates and corresponding la-
bels are shown in Fig. 7(g) and (a). It can be found that direction
estimates are consistent with realities, and velocity estimates are
in the normal range and intuitively follow the inverse relationship
between crowd densities and velocities. Meanwhile, velocity
estimates are slightly smaller than the normal pedestrian walking
velocity, i.e., around 1.35 m/s, which is reasonable considering
the pedestrians’ interaction and compositions of the pedestrian
speeds in different directions within a crowd.

To further verify the continuity of crowd analysis, CDM and
speed estimates at 11 consecutive moments with the interval
of 5 s centered on time T are presented in Fig. 7(h). It can be
concluded that: 1) CDM estimates at closer moments have more
similar shapes, indicating that CDM estimates have good conti-
nuities; 2) the proposed scheme can effectively identify LHDCs,
with the result that direction estimates are mostly consistent
with road directions, and velocity estimates follow the inverse
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Fig. 7. Visualized crowd analysis results on WiCAM dataset, where (a) camera view and labeled crowd counts in each area at time T ; (b) the GT CDM; (c)∼(f)
the CDMs estimated by CF, ADCA trained with the mixture of semi-synthetic datasets, pre-trained with the scaled and augmented data, and fine-tuned with 10
labeled training samples, respectively; (g) identified LHDCs and corresponding speed estimates at time T ; (h) results of continuous crowd analysis with the interval
of 5 s centered at time T (GT is the labeled global crowd count and E is the estimated one).

TABLE IV
CROWD DENSITY ESTIMATION RESULTS OF THE BASELINE (CF) AND DIFFERENT TRANSFER METHODS ON THE WICAM DATASET
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relationship between densities and velocities; 3) looking at the
density and speed simultaneously, some interesting phenomena
can be found: two LHDCs in the upper left corner at time
T − 10 s converge at time T − 5 s; the LHDC with a small
velocity at time T + 10 s splits into two small crowds at time
T + 15 s. In summary, the proposed scheme can be effectively
transferred into real scenarios and works well.

VII. CONCLUSION

This paper presented a passive WiFi sensing based fine-
grained crowd analysis scheme for large surveillance areas,
including a scenario-level crowd density estimation method and
a delicate speed estimation method for LHDCs. An in-depth
theoretical analysis was conducted to investigate the limitations
of passive WiFi sensing-based crowd analysis, and motivated us
to propose the ADCA model to combat these limitations, so as
to reconstruct CDMs like image reconstruction. Then, LHDCs
were identified from CDM estimates and speed vectors were esti-
mated using the BiConvLSTM model. To implement our scheme
and evaluate its performance, three semi-synthetic datasets with
different sizes and crowd densities were constructed. In addition,
transfer experiments on real-world data confirmed the practical-
ity of our scheme. In summary, our systematic work not only
can be referenced by related works in theory, but also paves the
way for introducing other innovative applications in practice.

As to future works, we shall focus on how to automatically and
efficiently label crowd scenes taken by drones and how to fuse
global WiFi measurements with local visual information, so as
to achieve accurate crowd analysis and enable more downstream
tasks.
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