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Abstract—With the development of Internet of Things (IoT)
and communication technology, abnormal parking detection
based on geomagnetic sensors equipped with solar panels has
become increasingly feasible and important. False parking
detection is a main challenge affecting the widespread use
of the aforementioned technology. Especially when ambient
light change triggers changes in the current of solar panel,
which may in turn cause local EM field changes and affect the
detection of nearby geomagnetic sensor. To that end, we propose
an abnormal parking detection scheme to distinguish between
real parking and false detections. Specifically, we establish
an equivalent model of the magnetic field around the solar
panel, and design a method to compute the magnetic field
at the periphery of the solar panel. Then, we analyze the
difference between the magnetic field caused by the changes in
ambient light and the magnetic field produced by vehicles, and
extract features that distinguish abnormal parking from false
detections. Based on the features, a state machine is designed
to distinguish the false detection of light from the real parking
based on the magnetic field waveform. Field tests show that the
accuracy of the designed abnormal parking detection scheme
can reach 97%.

Index Terms—Internet of things, abnormal parking detection,
geomagnetic sensor, smart roads

I. INTRODUCTION

With the rapid development of Internet of Things (IoT)

and communication technology, smart road technology has

received extensive attention from industry and academia [1].

In smart roads, by analyzing and processing traffic data

sensed by roadside sensors, efficient traffic management and

abnormal event processing can be achieved to improve the

traffic efficiency.

As a common road abnormal event, abnormal parking

refers to an event in which vehicles stay on the main lane or

emergency lane. Due to the high driving speed of vehicles,

abnormal parking events will affect the normal traffic order

and may lead to traffic accidents. Therefore, accurate identi-

fication of abnormal vehicle parking events is an important

function for smart roads. The existing schemes for detecting

abnormal parking based on various radars or videos are

difficult to deploy on a large scale on highways due to

cost limitations or visibility limitations. Recently, due to the

advantages of geomagnetic sensors such as low cost and

robust to environmental changes, researchers worldwide have

investigated parking detection schemes based on geomagnetic

sensors. In [2], the authors proposed an intelligent vehicle

management scheme using geomagnetic sensors to realize

real-time sharing of parking space information. In [3], the au-

thors proposed a parking detection algorithm for eliminating

interference from adjacent parking. The test showed that the

detection accuracy of the algorithm for vehicles entering and

leaving the parking space is 99.8% and 99.9%, respectively.

In order to overcome the interference of vehicles in adjacent

parking spaces, Zhang et al. [4] fused the data features

collected by the geomagnetic sensors from multiple adjacent

parking spaces to detect the current parking space occupancy.

In [5], the authors proposed a parking detection algorithm

that considers the temperature drift. With this algorithm, the

influence of temperature on parking detection accuracy can

be reduced.

Although parking detection based on geomagnetic sensors

has been widely studied, the detection solutions in the

literature mostly focused on detection in parking lots, with

few studying abnormal parking detection in highways. In the

parking lot scenario, the number of sensors is relatively small

and the location is relatively concentrated. Therefore, the

sensors can be powered by the battery or directly connected

to a power source. However, in the highway scenario, the

replacement of batteries or wired power supply will bring

huge consumption of human and financial resources.

For this reason, IoT devices integrating solar panels and

geomagnetic sensors have gradually gained widespread at-

tention [6]. Through the integration of geomagnetic sensors,

microprocessors, solar panels, batteries and other compo-

nents, the sensors can overcome the problems of high man-

ufacturing costs and poor battery life, and realize real-time

abnormal parking detection in highway scenarios. However,

the integration of solar panels and geomagnetic sensors

in closely packed IoT devices also brings new challenges.

Specifically, when the solar panel charges the sensor battery

under sunlight, a photon-generated current will be generated,

which induces magnetic field around the solar panel. There-

fore, when the ambient light changes drastically, the magnetic

field strength around the solar panel will fluctuate, which may

cause false detection and affect the accuracy of traffic flow

monitoring [7].

To address the aforementioned false detection problem,

we propose an abnormal parking detection scheme that

can distinguish between real parking and false detection.

Specifically, we first establish a magnetic field model around
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Fig. 1. The deployment of sensor node

the solar panel to calculate the magnetic field at the periphery

of the solar panel. Then, we analyze the difference between

the magnetic field generated by light and the magnetic field

generated by a vehicle passing through the geomagnetic

sensor, and extract the features that can be used to distinguish

abnormal parking and false detection. After that, we design a

state machine to distinguish between false detections caused

by the changes in ambient light and real parking. Finally, we

verify the effectiveness of our proposed scheme through field

tests.

The remainder of this paper is summarized as follows. Sec-

tion II presents the system model of the geomagnetic sensor

node and the equivalent model of the magnetic field around

the solar panel. In Section III, the abnormal parking detection

scheme is described. Section IV presents the experimental

results, followed by the conclusion in Section V.

II. SYSTEM MODEL

A. Geomagnetic Sensor

The geomagnetic sensor node used in this paper is com-

posed of microprocessor, geomagnetic sensor, data transmis-

sion module, solar panel, battery and its charging circuit [8].

The microprocessor adopts STM32F103 series 64-bit mi-

crocontroller. The solar panel converts solar energy into

electrical energy, charges the battery, which in turn supplies

power to the sensor node. The geomagnetic sensor is a

three-axis geomagnetic sensor with a sampling frequency

of 100Hz. It can simultaneously collect three-axis (i.e, X ,

Y , Z) magnetic field strength data. After collecting the

data, the data transmission module then uses the LoRa

wireless communication module to upload the data to an edge

computing server. As shown in Fig. 1, the sensor nodes are

deployed along the road boundary line, where the positive

direction of the X-axis of the sensor is the same as the

driving direction of the vehicle; the positive direction of the

Y -axis is parallel to the road and points to the centre of the

lane; the positive direction of the Z-axis is perpendicular to

the road.

Let Fx(k), Fy(k), and Fz(k) denote the magnetic field

data of the X , Y , and Z axes at the k-th sampling instant. In

order to process the environmental noise, the collected data

will be processed by a moving average filter. The filtering

formula can be expressed as

Fi(k) =
1

W−2

(
W∑
j=1

Fi(k −W + j)− Fmin − Fmax

)
(1)

where i ∈ {X,Y, Z}, Fi(k) is the filtered data, W is

the length of the sliding window, Fmin and Fmax are the

minimum and maximum values of the magnetic field data in

the sliding window, respectively [8].

As shown in Fig. 1, when the vehicle enters the detection

range of the geomagnetic sensor, the vehicle will induce

a magnetic field which can be sensed by the geomagnetic

sensor. When the vehicle leaves the detection range of the

geomagnetic sensor, the surrounding magnetic field will

return to the original level. Therefore, we take the magnetic

field strength value when no vehicle passes as the baseline.

If the detected magnetic field strength deviates significantly

from the baseline, it indicates that the vehicle is entering.

Conversely, if the magnetic field strength returns to the

vicinity of the baseline, it indicates that the vehicle is leaving.

Since the geomagnetic field will fluctuate slowly due to the

interference of environmental factors such as temperature,

the sensor nodes will update the baseline when no vehicles

pass by. We have

F i
b =

1

J

J∑
j=1

Fi(k − J + j) (2)

where F i
b is the updated baseline on axis i, which is equal to

the average of the latest J raw data collected for this axis.

In order to make full use of the information of the three-

axis data, the microprocessor fuses the filtered three-axis data

and uses the fused data for vehicle detection [8]. The three-

axis data can be fused by

Ffusion(k)

=

√
(FX(k)− FX

b )
2
+ (FY (k)− FY

b )
2
+ (FZ(k)− FZ

b )
2

(3)

where Ffusion(k) is the fused magnetic field strength at

sampling time k.

Based on (3), we set the detection threshold θth. If a

consecutive of M sampled data satisfying Ffusion(k) ≥ θth,

it is determined that a vehicle is passing the sensor node.

In contrast, if a consecutive of N sampled data satisfying

Ffusion(k) < θth, it is determined that the vehicle has left.

B. Magnetic Field Model for Solar Panels

It has been pointed out in [9] that a direct current (DC)

photon-generated current will be generated if sunlight hits a

solar panel, which will induce a magnetic field in the space.

Due to the large number of current branches on the surface of

solar panels, analyzing the magnetic field intensity generated

by each branch at a certain point in space is extremely

cumbersome. Therefore, in order to simplify the calculation,

we approximate and simplify multiple currents. Due to the

symmetry of the solar panel circuit, we consider equating the

photon-generated current inside it to a total current located
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Fig. 2. The positional relationship between the solar panel and the
geomagnetic sensor

at the centerline of the solar panel. Furthermore, we consider

the geomagnetic sensor located at a point outside and near

the solar panel. Then the positional relationship between the

solar panel and the geomagnetic sensor can be simplified as

the positional relationship between a finite-length DC current

and a point outside the current, as shown in Fig. 2.

In Fig. 2, the photon-generated current inside the solar

panel is approximately modeled by a DC current with a

length L and a magnitude of I , where L is approximately

equal to the length of the solar panel. Point A is the location

of the geomagnetic sensor. r is the length of the vertical

line from point A to the DC current I . By connecting point

A to the two end points of the current, we can obtain the

angles between the two lines and the vertical line, namely,

α1 and α2. Let the vertical line be the reference and take the

counterclockwise direction as the positive direction, then we

have α1 > 0 and α2 < 0.

According to the electromagnetic field theory, the magnetic

field strength generated by the equivalent current at point A
in Fig. 2 is given by

B =
μ0I

4π

∫
L

dL× r

r3
= e · μ0I

4πr
(sinα1 − sinα2) (4)

where μ0 is the magnetic permeability in the vacuum, e is

a unit vector with the same direction as the direction of the

magnetic field B.

According to the theory of photovoltaic power generation,

the photon-generated current in the solar panel is proportional

to the ambient light intensity. Therefore, it can be assumed

that the relationship between the photon-generated current I
and the light intensity G is

I = p1G+ p2 (5)

where p1 and p2 are the unknown constants to be determined.

By substituting Eq. (5) into Eq. (4), the relationship

between the magnetic field intensity B and the light intensity

G can be given by

B = e · μ0(p1G+ p2)

4πr
(sinα1 − sinα2) (6)

III. PARKING DETECTION SCHEME

A. Detection of Vehicle Parking and Departure

It has been pointed out in Section II-A that the vehicle

detection uses Eq. (3) to fuse the data collected by the

geomagnetic sensor to determine the arrival and departure of

vehicles. Therefore, the abnormal parking detection also uses

the characteristics of the three-axis waveform to determine

the parking event. When a vehicle is parked within the

detection range of the sensor node for a sufficiently long time,

the magnetic field waveform collected by the geomagnetic

sensor will tend to be stable. In addition, the relative position

of the vehicle to the sensor node will result in different

waveform shapes and amplitudes after stabilization.

Specifically, the range of magnetic field data is used in our

scheme for judging whether the waveform becomes stable.

Let FS
fusion represents the set of S magnetic field data

collected by the geomagnetic sensor, then the range of these

data can be calculated by

Range = max{FS
fusion} −min{FS

fusion} (7)

Based on Eq. (7), we denote the threshold as θrange. If

Range < θrange, it is determined that the waveform has

stabilized. That is, a vehicle is parked within the detection

range of the sensor node. The value of θrange will be

determined in Section III-D.

When the abnormally parked vehicle leaves, the magnetic

field will return to a level similar to that before the vehicle

parked. Therefore, similar to the detection of normal vehicles,

the magnetic field strength of N consecutive sampled data

is less than the detection threshold θth, it is determined that

the vehicle has left, and the abnormal parking event ends.

B. Features to Distinguish False Detection from Real Park-
ing

To distinguish between false detection caused by the

changes in ambient light and real parking, we first need

to analyze the difference between the two magnetic field

waveforms. According to the research in [10], different parts

of a vehicle have different degrees of influence on the geo-

magnetic field. Specifically, the parts that have the greatest

influence on the geomagnetic field are mainly the axles and

the engine. Therefore, we can divide abnormal parking into

two cases according to different relative positions of the

vehicle and the sensor node.

Case that has Not Passed(CNP): The vehicle stops as

soon as it enters the detection range of the geomagnetic

sensor, as shown in Fig. 3(a);

Case that has Passed(CP): Part or all of the vehicle has

passed the geomagnetic sensor before stopping, as shown in

Fig. 3(b).

For CNP, because the main body of the vehicle or the

part that has a strong influence on the magnetic field is

2023 IEEE Global Communications Conference: IoT and Sensor Networks

1062

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 11,2024 at 05:22:40 UTC from IEEE Xplore.  Restrictions apply. 



Sensor Node

(a) CNP

Sensor Node

(b) CP

Fig. 3. Two cases of abnorma1 parking

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time(s)

0

1000

2000

3000

4000

5000

6000

M
ag

ne
tic

 F
ie

ld
 In

te
ns

ity
 (n

T)

CNP
CP
false detection

Fig. 4. The magnetic field wave-
forms of parking and false detection

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time(s)

-200

0

200

400

600

800

1000

1200

1400

M
ag

ne
tic

 F
ie

ld
 In

te
ns

ity
 (n

T)

CNP.X
false detection.X

Fig. 5. The X-axis waveforms of
CNP and of false detection in Fig. 4

gradually approaching the geomagnetic sensor, the magnetic

field waveform shows an upward trend with time, and the

amplitude of the overall waveform is however small, as

shown in Waveform of CNP in Fig. 4. For CP, part or all of

the vehicle that has a strong influence on the magnetic field

begins to move away from the geomagnetic sensor. Thus, the

magnetic field waveform has reached the peak value, and the

amplitude begins to decrease, as shown in Waveform of CP

in Fig. 4.

As can be seen from Fig. 4, the waveform of CP has a

significant amplitude difference from the waveform of false

detection. Therefore, we consider the “maximum value of

the waveform” as a feature to distinguish false detection,

which is represented by PM . Specifically, when it is detected

that the change of the current magnetic field may be caused

by abnormal parking, by extracting the peak value of the

waveform and comparing it with an appropriately chosen

threshold θM , the false detection can be distinguished from

the real parking in CP.

Different from CP, as shown in Waveform of CNP and

Waveform of false detection in Fig. 4, the magnetic field

waveform collected by the sensor node in CNP is similar to

that caused by the false detection in amplitude and waveform.

In this case, it is difficult to distinguish the false detection

from the real parking using only PM . To this end, we need

to further consider other features. According to the model of

the solar panel magnetic field in Section II-B, the direction

of the magnetic field is perpendicular to the plane where

the solar panel is located, that is, perpendicular to the X-

axis of the geomagnetic sensor. Therefore, when the variation

of illumination changes the magnetic field around the solar

panel, the magnetic field mainly affects the Y -axis and Z-

axis data of the geomagnetic sensor, and has less effect on

the X-axis data. For the real parking event, when the sensor

node detects the vehicle, the amplitudes of the magnetic field

waveforms of the three axes have obvious changes. That is

to say, the false detection mainly affects the data of the Y -
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Fig. 6. State machine for abnormal parking detection

axis and Z-axis of the geomagnetic sensor, and the abnormal

parking has a relatively obvious impact on all three axes.

Therefore, we can distinguish between abnormal parking and

false detection by comparing the “change in amplitude of X-

axis waveform”, which is represented by Δx. Specifically,

when the geomagnetic sensor detects a waveform suspected

of abnormal parking, if the change of the waveform of the

X-axis is less than a fixed threshold θx, it is considered

that the waveform is generated by false detection. On the

contrary, if the change of the waveform of the X-axis is

greater than that, it is considered that the waveform is caused

by real parking. Fig. 5 shows the X-axis waveforms of CNP

and of false detection in Fig. 4, and it can be seen that

there is a significant difference in amplitude between the two

waveforms.

C. State Machine for Abnormal Parking Detection

According to the features discussed in Section III-B, the

state machine for abnormal parking detection is shown in

Fig. 6.

1) Baseline Update: When no vehicle passes by, the

state machine is to update the baseline using Eq. (2); If

Ffusion(k) ≥ θth, then jump to Arrival Detection state.

2) Arrival Detection: In this state, a counter variable

counter1 will be established to record the number of data

satisfying Ffusion(k) ≥ θth. If counter1 ≥ M , it suggests

that a vehicle is coming, then the state jumps to Arrived
state; Once Ffusion(k) < θth is satisfied, then jump to

Baseline Update state.

3) Arrived: In this state, Eq. (7) will be used to peri-

odically calculate Range. If Range < θrange, then jump

to Parking Detection state. If Ffusion < θth, jump to

Departure Detection state;

4) Departure Detection: In this state, a counter counter2
will be established to record the number of data satisfying

Ffusion < θth. If counter2 ≥ N , it indicates that the vehicle

has left, then the state jumps to Baseline Update state;

Once Ffusion(k) ≥ θth is satisfied, then jump to Arrived
state.

5) Parking Detection: In this state, the parameters PM

and Δx will be calculated to distinguish between false

detection and parking events. If PM ≥ θM or Δx ≥ θx,

then the state jumps to Park state; If PM < θM and
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Δx < θx, it means that it is a false detection, then jump

to Baseline Update state.

6) Park: In this state, the detection of vehicle departure

is performed, where the detection method is the same as that

of the Arrived state.

D. Determination of Parameters

For threshold θRange, we assume that the ambient noise

superimposed on the fused waveform follows a normal

distribution with an expectation of 0 and a standard deviation

of σRange. Then an estimate of the standard deviation σ̂Range

can be obtained from the acquired waveform data. Based on

σ̂Range, we can take

θRange = (4 ∼ 6)σ̂Range (8)

When the range of the data is less than θRange, the current

waveform can be considered to be stable.

For threshold θM , it is considered that its value should

be equal to the maximum magnetic field change that can be

generated by the false detection. Let Gmax and Gmin denote

the maximum and minimum values of outdoor light intensity,

respectively. Then, the value of θM can be calculated by

θM = K ·ΔG+ p2 (9)

where K = μ0p1

4πr (sinα1 − sinα2) and ΔG = Gmax −Gmin.

For threshold θx, attributable to noise and modeling errors

in the actual scene, the magnetic field strength on the X-axis

caused by false detection cannot be completely 0. Therefore,

based on the measured data, we count the variation of the

X-axis magnetic field strength in the false detection data

and use the maximum variation Δx̂max as an estimate of

the maximum magnetic field variation generated by the false

detection on the X-axis. Then, we assume that the noise

superimposed on the X-axis follows a normal distribution

with an expectation of 0 and a standard deviation of σx. By

collecting X-axis environmental data when no vehicles pass

by, we can obtain the estimate of σx. Based on the estimate

σ̂x, we have

θx = Δx̂max + (4 ∼ 6) σ̂x (10)

For θRange, its value is related to σ̂Range. In most road sce-

narios, there is no strong magnetic field interference source

near the sensor node, and the noise mainly comes from the

slight fluctuations of the geomagnetic field. Therefore, the

value of σ̂Range is consistent across all scenarios. For θM
and θx, K, p2 and Δx̂max involved in Eq. (9) and Eq.

(10), they depend on the hardware properties of the sensor

nodes. ΔG is the maximum value of outdoor light variation,

which has fully considered the extreme situations in various

road scenarios. θx is similar to θRange, and its value mainly

depends on slight fluctuations in the geomagnetic field.

Therefore, the values of θM and θx are not sensitive to

different scenarios.
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IV. PERFORMANCE EVALUATION

A. Magnetic Field Model Validation

We first verify the relationship between the photon-

generated current in the solar panel and the ambient light

intensity. We collected 60 sets of data, each of which includes

ambient illuminance and the corresponding current output of

the solar panel. Figs. 7(a)-7(c) show these collected data and

the corresponding first-order, second-order and third-order

polynomial fitting curves.

From these figures, it can be seen that the first-order

polynomial can already reflect the relationship between

illumination and output current well. When the order is

increased, the fitting results obtained will not have significant

improvement. Therefore, we can use Eq. (5) to characterize

their relationship. In addition, by using the least square

method, the parameters in Eq. (5) can be given by p1 = 0.002
and p2 = −14.530.

Based on Eq. (5), the rationality of Eq. (6) can be verified

as follows. We collected 8 sets of data, where each set of data

includes the variation of the ambient illuminance ΔG and the

variation of the environmental magnetic field collected by the

sensor node ΔBm. By measuring the relative position of the

solar panel and the geomagnetic sensor on the sensor node,

we can obtain the values of r, sinα1 and sinα2 in Eq. (6)

and further calculate the theoretical variation caused by the

change in ambient illumination. Fig. 8 shows the values of

ΔBm and the theoretical variation of the data in the same

set. It can be seen from Fig. 8 that the average relative

error between the measured variation and the theoretical

variation is 5.87%. Therefore, we can estimate the variation

of magnetic field caused by illumination using Eq. (6).

B. Parking Detection Accuracy Test

To test the accuracy of the parking detection scheme, we

deploy a sensor node on the lane line, as shown in Fig. 9.
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Fig. 9. Test scenario

TABLE I
DETECTION ACCURACY

Relative position
of vehicle

and sensor node

Lateral distance
between vehicle
and sensor node

Number of
data sets

Detection
Accuracy

CNP
0.3m 50 98%
0.7m 50 98%
1m 50 88%

CP
0.3m 50 100%
0.7m 50 100%
1m 50 98%

The raw geomagnetic field data collected by the sensor node

in real time can be stored through the laptop. And we use a

camera to record the actual situation of the test.

To calculate the detection rate of parking events, as shown

in TABLE I, we consider different scenarios according to the

relative position of the vehicle and the sensor node and the

lateral distance between them. As can be seen from TABLE

I, when the vehicle is close to the sensor node, the detection

accuracy is high. However, when the distance reaches 1

meter, due to the obvious attenuation of the magnetic field,

the amplitude of the magnetic field data collected by the

sensor is small. Therefore, the detection accuracy decreases.

Especially in CNP, when the lateral distance between the

vehicle and the sensor node is equal to 1 meter, the detection

rate is greatly reduced. This is because the distance between

the vehicle and the sensor node in this case is the largest of

the six cases in TABLE I. Due to the same amount of data

in each scenario, taking the average of all accuracy rates in

TABLE I can result in a detection accuracy of 97% for the

parking detection scheme.

V. CONCLUSION

In this paper, an abnormal parking detection scheme based

on geomagnetic sensor deployed in highway scenario is pro-

posed. In order to improve the accuracy of abnormal parking

detection, this paper focuses on the problem of false detection

caused by the changes in ambient light. First, an equivalent

magnetic field model around the solar panel is established.

Then, we analyze the differences between the magnetic field

changes caused by illumination and those caused by real

parking, and propose an abnormal parking detection scheme

to distinguish between false detection and real parking. The

test results show that the magnetic field model of the solar

panel can better reflect the real environmental magnetic field,

and the accuracy of the designed algorithm is 97%.

For future work, we will comprehensively consider the

influence of vehicle type and vehicle speed on the magnetic

field waveform to further improve the performance of our

parking detection scheme.
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