

1 **Real-time Vehicle Trajectory Clustering Using Geomagnetic Sensor**  
2 **Measurements**

3

4

5

6 **Guoqiang Mao**

7 School of Transportation

8 Southeast University, Nanjing 210096, China

9 Email: g.mao@ieee.org

10

11 **Zhaoying Hou, Corresponding Author**

12 School of Telecommunications Engineering

13 Xidian University, Xi'an 710071, China

14 Email: 23011210459@stu.xidian.edu.cn

15

16 **Maolin Peng**

17 School of Telecommunications Engineering

18 Xidian University, Xi'an 710071, China

19 Email: 24011210845@stu.xidian.edu.cn

20

21 **Tianxuan Fu**

22 School of Telecommunications Engineering

23 Xidian University, Xi'an 710071, China

24 Email: futianxuan@stu.xidian.edu.cn

25

26

27 Word Count: 4592 words + 2 table(s)  $\times$  250 = 5092 words

28

29

30

31

32

33

34 Submission Date: July 29, 2025

1 **ABSTRACT**

2 Real-time vehicle tracking is important for traffic management in intelligent transportation sys-  
3 tems (ITS). Geomagnetic sensors become a promising candidate for traffic measurements due to  
4 its robustness in adverse weather conditions, cost-effectiveness, and compact size. However, weak  
5 measurement signals due to small car size, noise and interference may cause missed or false detec-  
6 tions, reducing tracking accuracy. This issue is further compounded by the wireless transmission  
7 losses caused when transmitting the measurement data through low-power wireless transmission  
8 technology such as LoRa. In lieu of the aforementioned challenges, this paper proposes a cluster-  
9 ing algorithm for real-time vehicle tracking using ubiquitously deployed geomagnetic sensors. We  
10 first propose using directionality constraints, which can be inferred from geomagnetic sensor mea-  
11 surements, and dynamic energy management to handle trajectory fragmentation. On that basis,  
12 Bayesian optimization is employed for parameter tuning to enhance the robustness of trajectory  
13 estimation. The proposed algorithm is implemented using the real-world geomagnetic sensor net-  
14 work deployed on the Dongxiangxi Expressway in Jiangxi, China. Experimental results validate  
15 the superior performance of the proposed method to traditional methods like Density-Based Spa-  
16 tial Clustering of Applications with Noise (DBSCAN) and Kalman Filter, achieving an FMI score  
17 of 0.8683. The proposed method offers a cost-effective and robust solution for vehicle tracking in  
18 complex traffic environments, promoting geomagnetic sensor applications in ITS.

19

20 **Keywords:** Vehicle Tracking, Trajectory Estimation, Data Clustering, Geomagnetic Sensors

## 1 INTRODUCTION

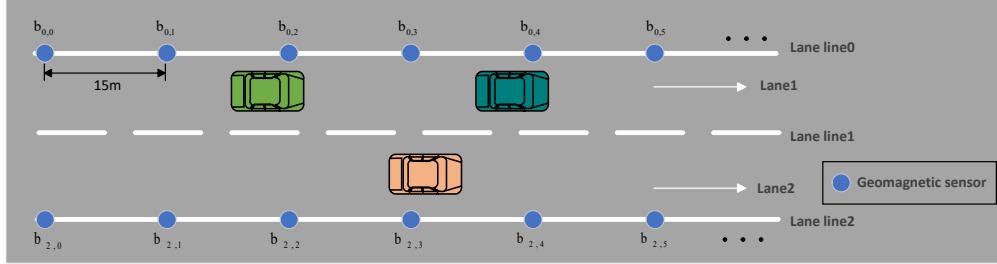
2 Real-time vehicle tracking is important for traffic management, which may significantly  
3 enhance traffic flow, safety, and road efficiency across highways and urban road networks (1).  
4 In recent years, it has been widely applied in fields like real-time roadside vehicle tracking and  
5 monitoring (2).

6 Roadside perception systems commonly rely on radar and camera-based sensors to collect  
7 real-time traffic data for vehicle tracking (3). However, deploying these sensors for large-scale  
8 highway applications presents significant challenges, including high implementation costs and  
9 degraded performance under adverse environmental conditions. Cameras, widely used in traffic  
10 monitoring, employ computer vision algorithms but face accuracy limitations in low-light con-  
11 ditions and occlusion scenarios (4). Similarly, radar excels at penetrating fog and rain to detect  
12 objects but struggles with target separation in dense urban environments due to the multi-path ef-  
13 fect (5). Therefore, there is an urgent need to develop novel sensing technologies or sensors to  
14 enable cost-effective and accurate vehicle tracking.

15 Geomagnetic sensors have gained prominence for vehicle tracking in ITS due to their ro-  
16 bust performance in adverse weather, low cost, compact size, and ease of installation (6). These  
17 attributes make them well-suited for scalable traffic monitoring solutions. For instance, a geo-  
18 magnetic sensor network deployed along lane markings (7), combined with a differential double-  
19 window vehicle detection algorithm (which identifies vehicles by comparing data from adjacent  
20 sensor time windows), achieves high-accuracy lane-level vehicle detection. Additionally, a dis-  
21 tributed sensor network integrating Total Field Matching (TFM, a localization technique based  
22 on magnetic field pattern comparison) with a Kalman Filter enables precise vehicle localization  
23 (8). However, these approaches assume idealized conditions without environmental interference,  
24 limiting its applicability in complex scenarios. To address single-sensor limitations, multi-sensor  
25 fusion has been explored, such as a tunnel vehicle tracking system that combines millimeter-wave  
26 radar and geomagnetic sensors through asynchronous data fusion to enhance robustness in tunnel  
27 environments (9).

28 Despite technological advances, critical challenges persist in vehicular magnetic sensing  
29 systems, including missed detections from signature overlap in dense traffic and environmentally-  
30 induced false positives from metallic interference (10). To address signal overlap in dense traffic,  
31 a filtering framework has been introduced, improving detection for most vehicles. However, it  
32 remains ineffective for small vehicles with weak magnetic signatures, leading to frequent missed  
33 detection (11). Interference from adjacent lanes can also cause false signals, resulting in "ghost  
34 target" trajectories. While static methods using fixed thresholds and regions of interest (ROIs)  
35 struggle to adapt to dynamic traffic (12), increasing misclassification risk. In LoRa-based sys-  
36 tems, although time-window compensation helps with short-term communication loss, trajectory  
37 updates are still unreliable under long interruptions or multiple-vehicle conditions, causing errors  
38 in tracking and reconstruction (13). The weak magnetic signals generated by small vehicles due to  
39 their lower metal mass, combined with environmental noise and interference from large vehicles  
40 in adjacent lanes, lead to frequent missed detections and false detections by geomagnetic sensors.  
41 Additionally, when using low-power wireless technologies (such as LoRa) for data transmission,  
42 communication signals are prone to interruption, which may cause tracking algorithms to prema-  
43 turately terminate vehicle trajectories due to missing measurements, leading to the loss of tracking  
44 targets. Furthermore, interference from vehicles in adjacent lanes can cause false detections, gen-  
45 erating measurements unrelated to actual vehicles and consequently producing entirely false "ghost

1 target" trajectories.



**Figure 1 Schematic diagram of geomagnetic sensor deployment in dual lane scenario.**

2 In lieu of the aforementioned challenges, we propose a clustering-based tracking algorithm  
 3 that leverages ubiquitously deployed geomagnetic sensors. We first propose a method that utilizes  
 4 directionality constraints, which are inferred from geomagnetic sensor measurements, together  
 5 with dynamic energy management to handle trajectory fragmentation. On that basis, Bayesian  
 6 optimization is employed for parameter tuning to enhance the robustness of trajectory estimation.  
 7 Finally, we verify the effectiveness of our proposed scheme through the real-world geomagnetic  
 8 sensor network deployed on the Dongxiangxi Expressway in Jiangxi, China.

9 The remainder of this paper is summarized as follows. Section 2 describes the system  
 10 model. Section 3 introduces a real-time trajectory clustering algorithm with directionality con-  
 11 straints and dynamic energy management, alongside a Bayesian optimization framework for pa-  
 12 rameter tuning. Section 4 analyzes the algorithm's performance and implementation in real-world  
 13 highway scenarios. Section 5 presents the conclusions.

#### 14 **SYSTEM MODEL**

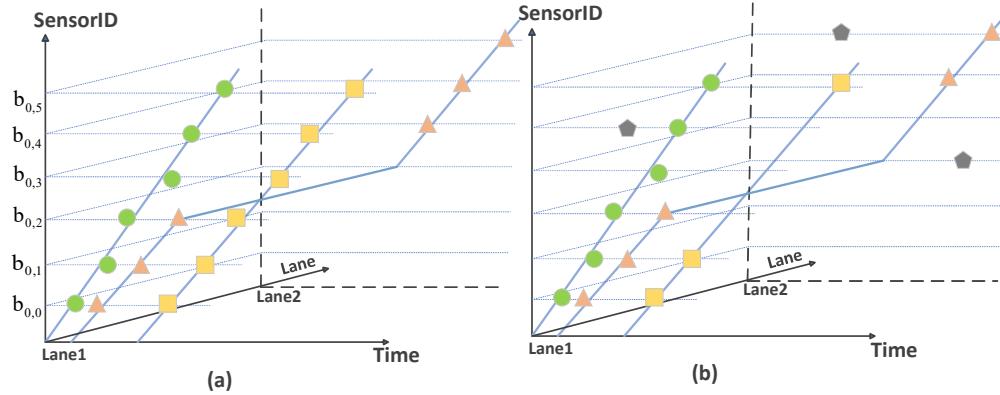
15 We consider a typical one-way, two-lane highway in China. In our study, geomagnetic  
 16 sensors are deployed along the lane boundary lines on both sides of the road, evenly installed at  
 17 intervals of  $L_a = 15$  m, as shown in Figure 1. The positions of the  $k$ -th pair of geomagnetic sensors  
 18 on lane lines 0 and 2 are denoted as  $b_{0,k}$  and  $b_{2,k}$ , respectively.

19 When a vehicle passes over a geomagnetic sensor, the sensor is triggered and reports its  
 20 measurements to the fusion center. Each reported measurement is treated as an individual sample  
 21 in the clustering algorithm, denoted as  $s_j$  (where  $j$  indexes the arrival order of samples in time),  
 22 and is represented as a four-dimensional feature vector:

$$23 \quad s_j = [time_j, sensorID_j, Mpeak_j, lane_j] \quad (1)$$

24  $time_j$  denotes the timestamp when the geomagnetic sensor was triggered;  $sensorID_j$  corre-  
 25 sponds to the position of the geomagnetic sensor;  $Mpeak_j$  represents the peak magnetic disturbance  
 26 value caused by the vehicle passage, capturing the strongest moment of geomagnetic fluctuation;  
 27 and  $lane_j$  indicates the lane line number to which the geomagnetic sensor belongs. A sample such  
 28 as [1702631668170, 17, 625, 2] corresponds to a measurement reported by a geomagnetic sensor  
 29 located at position  $b_{2,17}$ , which is the 17th geomagnetic sensor installed along lane line 2, indi-  
 30 cating that the target is assumed to come from lane 2. The value 1702631668170 indicates the  
 31 timestamp in milliseconds when the sensor was triggered, and 625 is the peak magnetic distur-  
 32 bance caused by the vehicle passage, recorded in *LSB*. Here, least significant bit (*LSB*) refers to

1 the unit of digital output produced by the 16-bit analog-to-digital converter (ADC) embedded in  
 2 the VCM5883L geomagnetic sensor used in our system, with a conversion ratio of 3000LSB per  
 3 Gauss.



**Figure 2** Missed and false detections in a multi-geomagnetic sensor system. Different marker shapes denote sample from geomagnetic sensors for various vehicles. (a) Ideal detections. (b) Detection errors, including single misses (orange triangles), consecutive misses (yellow squares), and false detections (black pentagons).

4 An example of missed and false detections in the multi-geomagnetic sensor vehicle tracking  
 5 system is shown in Figure 2. To illustrate this case, we selected three dimensions from the  
 6 original four-dimensional samples: *time*, *sensorID*, and *lane*. Panel (a) of Figure 2 presents  
 7 an ideal detection scenario, where the trajectory marked by orange triangles indicates a vehicle  
 8 changing from lane 1 to lane 2, while green circles and yellow squares represent vehicles traveling  
 9 straight in lane 1. A problematic scenario involving both missed and false detections is illustrated  
 10 in panel (b) of Figure 2. Missed detections, including single misses (e.g., the trajectory represented  
 11 by orange triangles) and consecutive misses (e.g., the trajectory represented by yellow squares),  
 12 lead to incomplete trajectory data. These missed detection cause large temporal and spatial gaps  
 13 in the measurement sequence, along with the loss of key motion information, making it difficult  
 14 for the algorithm to correctly associate measurements belonging to the same vehicle and increasing  
 15 the risk of trajectory mismatches or omissions. At the same time, false detections (e.g., black  
 16 pentagons) may occur due to interference from adjacent lanes or environmental noise, further com-  
 17 plicating the matching between geomagnetic sensor measurements and actual vehicle trajectories.  
 18 This issue becomes more pronounced in dense traffic scenarios, where such false detection are  
 19 more likely to generate spurious trajectories that do not correspond to any real vehicle.

20 These challenges clearly show the need for a more robust tracking framework. Therefore,  
 21 the objective of this paper is to develop a system capable of accurate vehicle tracking even in the  
 22 presence of missed and false detections.

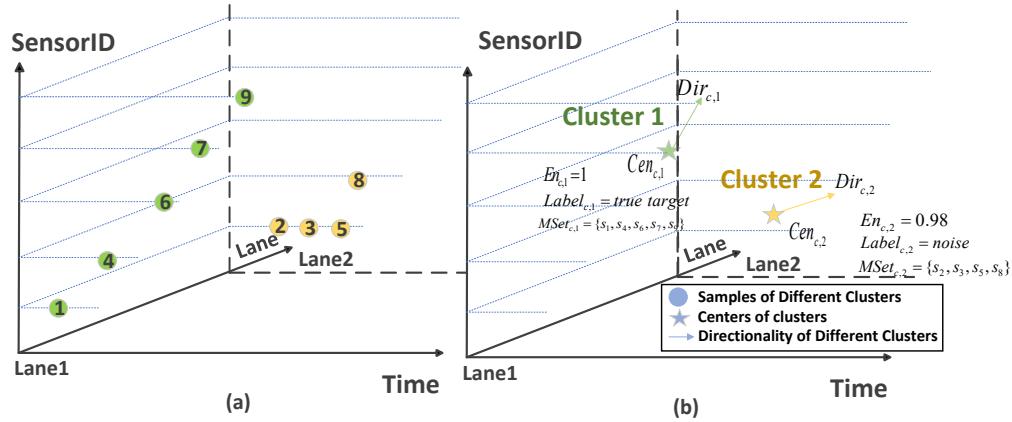
## 23 THE PROPOSED ALGORITHM

### 24 Trajectory Clustering Algorithm Integrating Directionality and Energy Management

25 Clustering-based approaches are widely adopted in data stream analysis due to their ability to effi-  
 26 ciently discover arbitrary-shaped patterns and adapt to dynamic input without requiring predefined  
 27 labels (14). In the context of vehicle tracking using geomagnetic sensor data, clustering is particu-

larly suitable because it naturally supports online grouping of measurements into vehicle trajectories, even under streaming and noisy conditions. Typical density-based clustering methods assign new samples to existing clusters based on spatial proximity, usually measured by the distance to the cluster center, and use local density to distinguish between meaningful groups (*true targets*) and *noise*. However, these approaches often rely solely on geometric features and may fail when measurements are sparse or disrupted by missed and false detections, which are common in real-world traffic.

To improve clustering robustness under such conditions, we incorporate directionality to capture movement trends, apply dynamic energy management to handle cluster lifecycle, and design a scoring-based data association mechanism that balances spatial distance and directional similarity. This combination enables our method to reduce fragmentation and avoid mismatches in trajectory tracking based on geomagnetic sensor streams.



**Figure 3 The relationship between samples, clusters, and their cluster graph. (a) Clustered samples, where numbers indicate the temporal order of samples and colors represent cluster assignments. (b) Cluster graph structure.**

We use a structure called the cluster graph to store and manage the key attributes of the  $i$ -th cluster  $C_i$ , as illustrated in Figure 3, defined as:

$$\text{Graph}_i = \{Cen_{c,i}, Dir_{c,i}, En_{c,i}, Label_{c,i}, Mset_{c,i}\} \quad (2)$$

each cluster graph contains the state information of a vehicle trajectory,  $Cen_{c,i}$  denotes the center of  $i$ -th cluster  $C_i$ , which physically represents an approximate position of the target associated with this cluster in the four-dimensional sample space. Rather than being a strict geometric center. It is computed as a weighted combination of the cluster's historical position and the newly associated sample, as defined in Equation 7.

$Dir_{c,i}$  is the directionality vector, capturing the recent movement trend of the target within the same feature space as the sample vectors defined in Equation 1. It is computed as a weighted combination of the cluster's historical directionality and the newly associated sample, as defined in Equation 4.

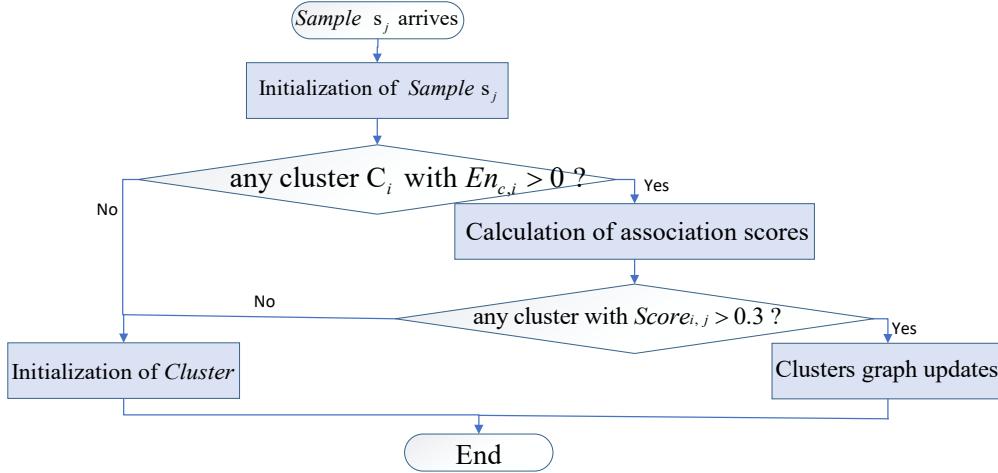
$En_{c,i}$ , representing the lifetime of the  $i$ -th cluster, is constrained within the range  $(-\infty, 1]$ . We adopt a simple time-based decay model, in which the energy is updated upon each state update,

1 as described in Equation 11. A cluster is considered active if  $En_{c,i} > 0$ , meaning the target is still  
 2 being tracked; otherwise, it is treated as inactive and removed from the tracking process.

3  $Label_{c,i}$  is the category label of the  $i$ -th cluster, taking a value of either *true target* or *noise*.

4  $Mset_{c,i}$  is an associated measurement set containing all samples assigned to the  $i$ -th cluster.

5 The initialization procedures for all these attributes are described in Section 3.1.2, while their  
 6 update mechanisms are detailed in Section 3.1.4.



**Figure 4 Workflow of the trajectory clustering algorithm.**

7 The overall workflow of the algorithm is illustrated in Figure 4. When a new sample  $s_j$   
 8 arrives at time  $time_j$ , the sample is initialized, as described in Section 3.1.1. Next, the algorithm  
 9 checks whether any existing cluster with a positive lifetime value, i.e.,  $En_{c,i} > 0$ , is available. If  
 10 no such cluster exists, the sample is used to form a new cluster (see Section 3.1.2), and the current  
 11 processing round terminates, awaiting the next incoming sample. If at least one such active cluster  
 12 exists, the algorithm proceeds to compute association scores (detailed in Section 3.1.3). Based on  
 13 the score results, the sample either initializes a new cluster (Section 3.1.2) or is associated with  
 14 an existing cluster, with corresponding parameter updates (Section 3.1.4). This process repeats  
 15 as each new sample arrives. The detailed description of each stage is provided in the following  
 16 subsections.

#### 17 *Initialization of Sample*

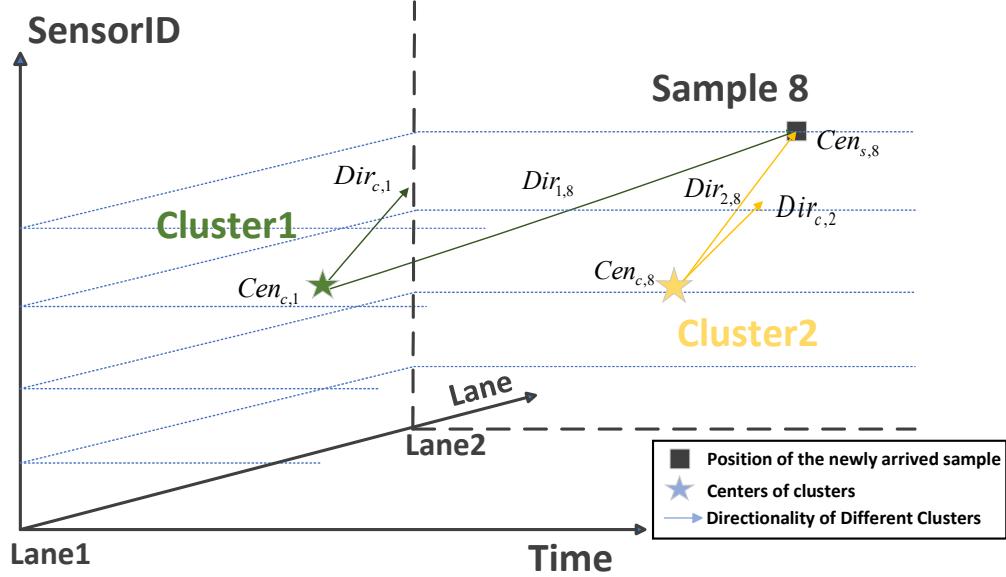
18 To initialize the  $j$ -th sample  $s_j$ , we assign its center  $Cen_{s,j}$  as the complete four-dimensional feature  
 19 vector  $[time_j, sensorID_j, Mpeak_j, lane_j]$ , representing the sample's coordinates in the observation  
 20 space.

#### 21 *Initialization of Cluster*

22 When the  $j$ -th sample  $s_j$  needs to be initialized as a new cluster  $C_i$ , we assign it a corresponding  
 23 cluster graph structure at time  $t_j$ , as defined in Equation 2. Specifically, the cluster center  $Cen_{c,i}$   
 24 is initialized using the spatial position of the incoming sample, such that  $Cen_{c,i} = Cen_{s,j}$ . The  
 25 directionality vector is set as  $Dir_{c,i} = Cen_{c,i} + [600, 1, 0, 0]$ , which reflects an empirical assumption  
 26 based on typical highway traffic. It corresponds to a vehicle advancing by one sensor every 600  
 27 milliseconds (corresponding to a speed of approximately 90 km/h), without deviating from its lane

1 or changing its magnetic value. The initialization provides a directional seed to support early-  
 2 stage association, it can be adjusted for different road conditions, and its impact is quickly reduced  
 3 by continuous updates with newly associated measurements. The cluster lifetime is initialized as  
 4  $En_{c,i} = 1$  to reflect that the target has just been matched with a new sample, indicating recent and  
 5 reliable activity. The label  $Label_{c,i}$  is initially set to *noise* due to the limited number of samples, as  
 6 defined in Equation 10. Finally, the measurement set is initialized as  $Mset_{c,i} = s_j$ .

### 7 Calculation of Association Scores



**Figure 5 Computation of association scores between clusters and sample.**

8 We use an association score  $Score_{i,j}$  to evaluate the benefit of assigning the newly arrived  $s_j$  to  
 9 each currently active cluster  $C_i$  ( $En_{c,i} > 0$ ) at time  $t_j$ , this score is calculated as defined in Equation  
 10 3, with the goal of maximizing the overall assignment effectiveness. Subsequent computations and  
 11 variable values in this section are based on the state at the arrival time  $t_j$  of  $s_j$ .

$$12 \quad Score_{i,j} = \alpha \cdot Dist_{i,j} + \beta \cdot CosSim_{i,j} \quad (3)$$

13 where  $\alpha$  and  $\beta$  are weights that balance the influence of  $Dist_{i,j}$  and  $CosSim_{i,j}$ .  $Dist_{i,j}$  is the  
 14 weighted Euclidean distance between the center of the cluster  $Cen_{c,i}$  and the sample's position  
 15  $Cen_{s,j}$  across four-dimensional space:

$$16 \quad Dist_{i,j} = \sqrt{\sum_{k=1}^4 w_k (Cen_{c,i}^{(k)} - Cen_{s,j}^{(k)})^2} \quad (4)$$

17 where  $w_k$  represents the importance weight assigned to the  $k$ -th dimension of the feature space.  
 18 The weights  $w_1, w_2, w_3, w_4, \alpha$  and  $\beta$  are determined through optimization in Section 3.2. The  
 19 directional similarity  $CosSim_{i,j}$  between the cluster center  $Cen_{c,i}$  and the sample's position  $Cen_{s,j}$   
 20 is illustrated in Figure 5, is expressed as

$$1 \quad \text{CosSim}_{i,j} = \frac{\text{Dir}_{c,i} \cdot \text{Dir}_{i,j}}{\|\text{Dir}_{c,i}\| \|\text{Dir}_{i,j}\|} \quad (5)$$

2 where  $\text{Dir}_{c,i}$  represents the directionality of  $C_i$ , and  $\text{Dir}_{i,j}$  denotes the direction vector between the  
3  $i$ -th cluster  $C_i$  and the  $j$ -th sample  $s_j$ , defined as

$$4 \quad \text{Dir}_{i,j} = \text{Cen}_{s,j} - \text{Dir}_{c,i} \quad (6)$$

5 The sample is associated with the cluster that obtains the highest score, provided that the  
6 score exceeds 0.3. This threshold is a commonly used heuristic designed to filter out low-similarity  
7 clusters and avoid unreliable associations. We find that this value maintains matching accuracy  
8 while providing sufficient tolerance, making it suitable for most real-world scenarios with noise  
9 and uncertainty.

10 *Cluster Graph Update*

11 When sample  $s_j$  is associated with  $i$ -th cluster  $C_i$ , the cluster's state at time  $t_j$  is updated as follows.

12 The center  $\text{Cen}_{c,i}(t_j)$  is updated by integrating the center position  $\text{Cen}_{c,i}(t_{j-1})$  and the sam-  
13 ple's position of the newly associated sample  $\text{Cen}_{s,j}(t_j)$ :

$$14 \quad \text{Cen}_{c,i}(t_j) = \gamma \cdot \text{Cen}_{c,i}(t_{j-1}) + \delta \cdot \text{Cen}_{s,j}(t_j) \quad (7)$$

15 where  $\gamma + \delta = 1$ , and  $t_{j-1}$  denotes the arrival time of the previous  $(j-1)$ -th sample  $s_{j-1}$ . By bring-  
16 ing the cluster center  $\text{Cen}_{c,i}(t_j)$  closer to the actual position of the target, the accuracy of association  
17 score calculations between newly arrived samples and all active clusters can be improved.

18 Similarly, the cluster's directionality vector  $\text{Dir}_{c,i}(t_j)$  is updated as follows:

$$19 \quad \text{Dir}(t_j) = \varepsilon \cdot \text{Dir}_{c,i}(t_{j-1}) + \theta \cdot \text{Dir}_{i,j}(t_j) \quad (8)$$

20 where  $\varepsilon + \theta = 1$ . The values of  $\gamma$ ,  $\delta$ ,  $\varepsilon$  and  $\theta$  are optimized in Section 3.2.

21 The energy  $\text{En}_{c,i}(t_j)$  is reset to 1 to show that the target was recently detected again.

22 The new sample  $s_j$  is added to the cluster's measurement set:

$$23 \quad \text{Mset}_{c,i}(t_j) = \text{Mset}_{c,i}(t_{j-1}) \cup \{s_j\} \quad (9)$$

24 Lastly, the cluster's category label  $\text{Label}_{c,i}$  is evaluated based on the size of its associated  
25 measurement set  $\text{Mset}_{c,i}$ . If the number of associated samples exceeds a predefined threshold  $\theta_N$ ,  
26 the label is updated to *true target*; otherwise, it remains as *noise*:

$$27 \quad \text{Label}_{c,i} = \begin{cases} \text{true target} & \text{if } |\text{Mset}_{c,i}(t_j)| \geq \theta_N \\ \text{noise} & \text{otherwise} \end{cases} \quad (10)$$

28 in our implementation,  $\theta_N = 5$ , which reflects a minimum number of observations required to  
29 reliably distinguish *true target* from *noise*.

30 For all clusters  $C_l$ , ( $l \neq i$ ) not associated with the current sample, their lifetime  $\text{En}_{c,l}(t_j)$   
31 are reduced by a fixed decay unit decay in Equation 11, while all other attributes of these clusters

1 remain unchanged.

2  $\text{En}_{c,l}(t_j) = \text{En}_{c,l}(t_{j-1}) - \text{decay}$  (11)

3 The parameter  $\text{decay} \in (0, 1)$  controls how quickly a cluster is removed when no new sam-  
 4 ples are associated. We set  $\text{decay} = 0.02$ , meaning a cluster will expire after about 3.5 seconds  
 5 (around six sensor gaps) without updates. This value was tested on real highway data and worked  
 6 well across different speeds. The simple linear rule is easy to implement, and its conservative  
 7 setting allows for short gaps caused by occasional missed detections without losing valid clusters.

## 8 **Hyperparameter Optimization Framework Based on Bayesian Optimization**

9 The performance of the aforementioned trajectory clustering algorithm depends heavily on a set of  
 10 key hyperparameters. Traditional optimization methods like grid search and random search explore  
 11 the hyperparameter space by sampling candidate hyperparameter without leveraging prior evalua-  
 12 tions, resulting in poor sample efficiency (15). In these approaches, each sampled hyperparameter  
 13 vector is evaluated by inputting it into the objective function, which returns a scalar performance  
 14 metric. Black-box optimizers (16) are also typically evaluation-intensive and not designed to min-  
 15 imize them effectively. In contrast, Bayesian optimization enables efficient global optimization of  
 16 black-box functions by coupling a surrogate model with an adaptive acquisition strategy, which  
 17 guides the sampling process and thereby reduces the number of required evaluations.

18 For our real-time clustering algorithm, the objective function is defined as  $FMI = F(x)$ ,  
 19 where  $x = \{\alpha, \beta, w_1, w_2, w_3, w_4, \gamma, \delta, \varepsilon, \theta\}$  (see Section 3.1), and Fowlkes-Mallows Index (FMI) is  
 20 the clustering performance metric (see Section 4.2). We choose FMI as the optimization objective  
 21 because it effectively balances precision and recall, providing a robust measure of the similarity  
 22 between the predicted clustering and the ground truth. Its sensitivity to both correct and incorrect  
 23 cluster assignments makes it particularly well-suited for evaluating the consistency and reliabil-  
 24 ity of clustering structures in real-world vehicle trajectory data. To achieve accurate and robust  
 25 vehicle clustering with minimal evaluations, we implement a Bayesian optimization framework  
 26 that iteratively builds a probabilistic surrogate model and uses an acquisition function to guide the  
 27 selection of the next most promising hyperparameter setting.

### 28 *Objective Modeling with Gaussian Process*

29 We adopt a Gaussian Process (GP) as the surrogate model to approximate the true objective func-  
 30 tion  $F(x)$ . GP is a non-parametric Bayesian model that provides both mean estimates and uncer-  
 31 tainty measures, which makes it particularly suitable for sample-efficient exploration in black-box  
 32 optimization settings (17). It is defined by mean function  $m(x)$  and kernel function  $k(x_i, x_j)$ . As-  
 33 suming zero mean  $m(x) = 0$ , we use the Squared Exponential kernel (17):

34  $k(x_i, x_j) = \exp\left(-\frac{1}{2}\|x_i - x_j\|^2\right)$  (12)

35 In this function,  $x_i$  and  $x_j$  represent the  $i$ -th and  $j$ -th hyperparameter vector. This kernel  
 36 encodes the assumption that the objective function is smooth with respect to its hyperparameters,  
 37 so small variations in input lead to gradual changes in  $FMI$ .

38 We begin by evaluating the objective at  $m$  initial hyperparameter vectors, forming the hy-  
 39 perparameter training set  $D_{1:m} = \{(x_n, f_n)\}_{n=1}^m$ , where each  $x_n$  denotes a specific hyperparameter

1 vector, and  $f_n = F(x_n)$  represents the corresponding objective value, i.e., the clustering performance (*FMI*) evaluated at the  $n$ -th hyperparameter vector. To model the objective function using  
 2 a Gaussian Process, we define the prior distribution over the function values as  $f_{1:m} \sim \mathcal{N}(0, \mathbf{K})$ ,  
 3 where  $\mathbf{K}$  is the kernel matrix:  
 4

5 
$$\mathbf{K} = [k(x_i, x_j)]_{i,j=1}^m \quad (13)$$

6 For a new candidate hyperparameter vector  $x_{m+1}$ , the posterior distribution yields (18):

7 
$$F(x_{m+1}) \mid f_{1:m} \sim \mathcal{N}(\mu(x_{m+1}), \sigma^2(x_{m+1})) \quad (14)$$

8 with

9 
$$\mu(x_{m+1}) = \mathbf{k} \mathbf{K}^{-1} f_{1:m}^\top, \quad (15)$$

10 
$$\sigma^2(x_{m+1}) = k(x_{m+1}, x_{m+1}) - \mathbf{k} \mathbf{K}^{-1} \mathbf{k}^\top \quad (16)$$

11 where  $\mathbf{k} = [k(x_{m+1}, x_1), \dots, k(x_{m+1}, x_m)]^\top$ . The posterior mean  $\mu(x_{m+1})$  and variance  $\sigma^2(x_{m+1})$   
 12 are used to construct the acquisition function, which then determines the next candidate point to  
 13 evaluate.

14 *Efficient Point Selection via Expected Improvement*

15 We use the Expected Improvement (EI) criterion to select the next candidate point. For a can-  
 16 didate hyperparameter  $x_{m+1}$ , the EI is defined as  $EI(x_{m+1}) = \mathbb{E}[\max(f(x_{m+1}) - f^*, 0)]$ , where  
 17  $f^* = \max(f_{1:m})$  is the best FMI value observed so far. This expectation captures the potential gain  
 18 of evaluating  $F(x_{m+1})$  over the current best value  $f^*$ , considering only cases where  $F(x_{m+1}) > f^*$ .  
 19 The EI has a closed-form expression (Equation 17) (18), which is maximized (Equation 19) to  
 20 select the next candidate.

21 
$$EI(x_{m+1}) = (\mu(x_{m+1}) - f^*) \Phi(Z) + \sigma(x_{m+1}) \phi(Z) \quad (17)$$

22 
$$Z = \frac{\mu(x_{m+1}) - f^*}{\sigma(x_{m+1})} \quad (18)$$

23 here  $\Phi(\cdot)$  and  $\phi(\cdot)$  denote the cumulative distribution function and probability density function  
 24 of the standard normal distribution, respectively. The term  $Z$  represents the standardization of  
 25 the improvement relative to predicted uncertainty, enabling us to quantify the significance of the  
 26 potential improvement in the context of the predicted uncertainty.

27 The next hyperparameter is selected to maximize the expected improvement by solving

28 
$$x_{m+1} = \arg \max EI(x_{m+1}) \quad (19)$$

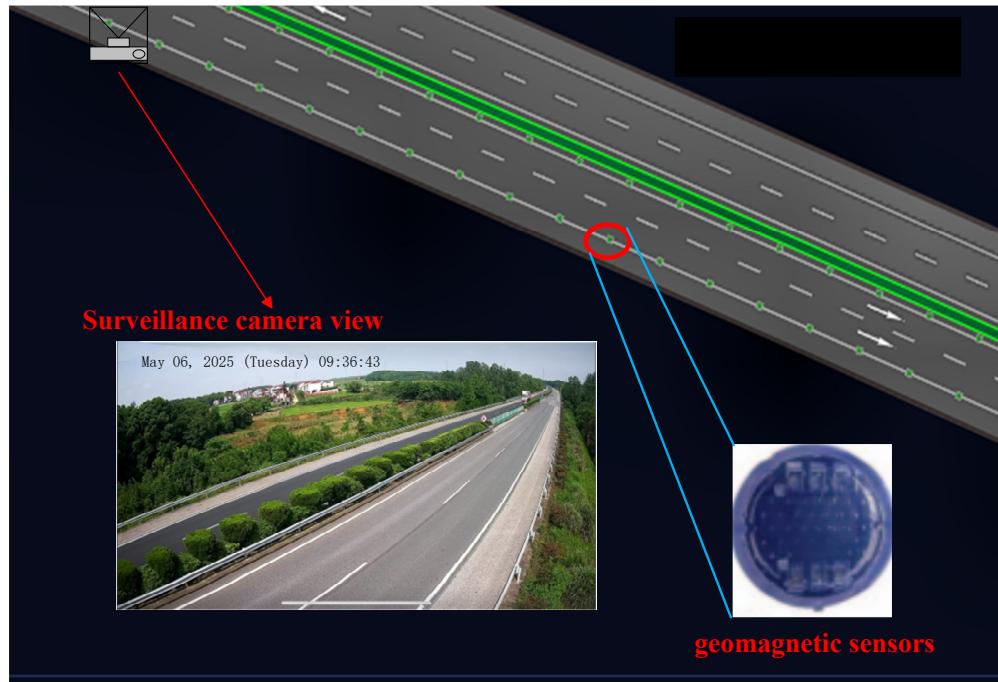
29 The newly observed  $(x_{m+1}, f_{m+1})$  is added to the hyperparameter training set  $D_{1:m}$ , and the  
 30 GP model is updated by repeating the steps described in Section 3.2.1 to predict the mean (Equa-  
 31 tion 15) and variance (Equation 16) of the next candidate hyperparameter. These predicted values  
 32 are then used in the EI (Equation 17) to compute the expected gain, and the next hyperparameter is  
 33 determined by maximizing EI according to Equation 19. This process continues until the desired

1 number of iterations is reached. Finally, the optimal hyperparameter vector  $x^*$  is identified as the  
 2 one yielding the highest observed FMI.

### 3 EXPERIMENTS AND ANALYSIS

#### 4 Experimental Setup

5 The proposed algorithm has been deployed on the Dongxiangxi Expressway in Jiangxi Province,  
 6 China, as illustrated in Figure 6. The one-way, dual-lane expressway, spanning approximately  
 7 1080 meters, is equipped with 144 geomagnetic sensors to detect the real-time measurements of  
 8 vehicles. Additionally, a surveillance camera records actual vehicle movements for qualitative  
 9 validation of clustering results.



**Figure 6 Monitoring View of Dongxiangxi Road Section.**

10 A key challenge addressed in this study is handling non-ideal data. Table 1 shows several  
 11 representative 10-minute sessions, where sensor non-reporting rates reached up to 50.7% on some  
 12 days, with up to 5 sensors consecutively missing data. While only a few sessions are shown here,  
 13 similar reporting conditions have been frequently observed on this road segment and remained  
 14 relatively similar across different observations.

**TABLE 1 Data Reporting Status**

| Date of Observation                     | 2024.12.15 | 2024.12.16 | 2025.2.27 |
|-----------------------------------------|------------|------------|-----------|
| Non-Reporting Rate                      | 50.7%      | 31.9%      | 33.3%     |
| Longest Consecutive Non-Reporting Count | 5          | 5          | 4         |

1 **Evaluation Metrics**

2 To comprehensively evaluate the performance of clustering, we adopt three classical metrics: the  
 3 Rand Index (RI), Jaccard Coefficient (JC), and FMI (19). These evaluation methods, based on  
 4 ground-truth labels, assess the consistency between the clustering results and true class assign-  
 5 ments by comparing pairwise relationships among samples, so as to reflect how well the algorithm  
 6 captures the true grouping patterns in the data.

7 Consider a measurement set  $S = \{s_1, s_2, \dots, s_m\}$  with  $m$  samples, where the reference clus-  
 8 tering is  $C = \{C_1, C_2, \dots, C_k\}$ , and the predicted clustering is  $C^* = \{C_1^*, C_2^*, \dots, C_s^*\}$ . We categorize  
 9 all sample pairs  $(s_i, s_j)$  where  $i < j$  into four groups:  $a$ , the number of pairs correctly assigned to  
 10 the same cluster in both  $C$  and  $C^*$ ;  $b$ , pairs in the same reference cluster but separated in the pre-  
 11 diction;  $c$ , pairs in different reference clusters but grouped in the prediction; and  $d$ , pairs correctly  
 12 assigned to different clusters in both.

13 These values satisfy:

$$14 \quad a + b + c + d = \frac{m(m-1)}{2} \quad (20)$$

15 The RI measures the proportion of pairs consistently classified in the clustering results.

$$16 \quad RI = \frac{2(a+d)}{m(m-1)} \quad (21)$$

17 The JC calculates the proportion of correctly clustered pairs among pairs grouped in either  
 18 clustering.

$$19 \quad JC = \frac{a}{a+b+c} \quad (22)$$

20 The FMI finds the geometric mean of precision and recall for the clustering.

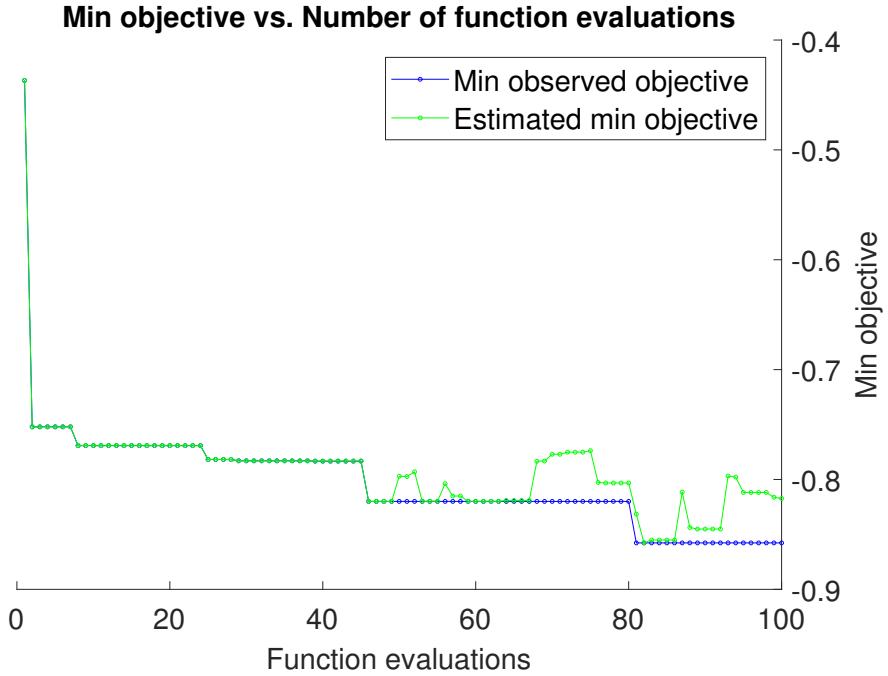
$$21 \quad FMI = \sqrt{\frac{a}{a+b} \times \frac{a}{a+c}} \quad (23)$$

22 All metrics range from 0 to 1, with higher values indicating better clustering performance.  
 23 While RI evaluates overall consistency, JC emphasizes cluster compactness, and FMI balances  
 24 precision and recall, making it a key performance indicator for this task.

25 **Bayesian Optimization Experiments**

26 We randomly selected 20 minutes of real-world measurements, and their ground-truth cluster labels  
 27 were established via manual video verification to create a training set. The optimization objective  
 28 was to maximize the FMI score (equivalent to minimizing negative FMI). Each optimization run  
 29 consisted of 100 iterations and was repeated 10 times to account for randomness, with the best-  
 30 performing parameter set being selected.

31 In Figure 7, the blue curve represents the best observed FMI score after each evaluation  
 32 (i.e., the maximum observed value of the objective function), while the green curve shows the sur-  
 33 rogated model’s prediction of the maximum objective value. The optimization process unfolds in  
 34 two phases. Initially, during the first 40 iterations, both curves decline sharply, reflecting Bayesian



**Figure 7 Bayesian Optimization iterative process.**

1 optimization's effective identify promising parameter regions, as the GP surrogate model adapts  
 2 to the objective function's shape. Subsequently, in the latter 60 iterations, the observed values sta-  
 3 bilize around 0.8, while the surrogate model's estimates oscillate between 0.8 and 0.9, suggesting  
 4 limited potential for further gains with exploration. Convergence is inferred when neither curve  
 5 shows significant improvement, with the best FMI value reaching 0.8871.

## 6 Experimental Evaluation

7 To evaluate the effectiveness of the proposed clustering algorithm, we compared it with two rep-  
 8 resentative baselines: a model-based tracker and a density-based clustering method. The first  
 9 baseline is the Kalman Filter (KF) tracker, implemented with a constant velocity model and using  
 10 the Hungarian algorithm for data association (20). This represents a standard approach for vehicle  
 11 tracking on highways. The second baseline is DBSCAN (21), a well-known density-based cluster-  
 12 ing algorithm that handles noise but lacks any motion model, making it a suitable contrast for our  
 13 method.

14 To ensure fairness, we optimized the key parameters of DBSCAN, including the neighbor-  
 15 hood radius  $eps$  and the minimum number of core points  $min\_samples$ , as well as the full set of  
 16 hyperparameters for our method using the same Bayesian Optimization framework on a common  
 17 training set. The Kalman Filter adopts a constant velocity (CV) motion model. The state vector  
 18 follows the four-dimensional structure defined in Equation 1, including time, geomagnetic sen-  
 19 sor ID, magnetic peak value, and lane index. To ensure a fair comparison under imperfect data  
 20 conditions involving missed and false detections, the process noise covariance matrix  $Q$  and the  
 21 measurement noise covariance matrix  $R$  are set as diagonal matrices with moderately conservative  
 22 values:

1  $Q = \text{diag}(1 \times 10^{-3}, 1, 0.05, 0.2)$  (24)

2  $R = \text{diag}(5 \times 10^{-3}, 2, 0.1, 0.5)$  (25)

3 These settings are designed to account for uncertainties commonly observed in geomag-  
4 netic sensor data.

5 The evaluation was conducted on a 25-minute real-world measurement with 256 vehicles.

6 Our method and KF were executed in real time, processing data sequentially. The collected mea-  
7 surement set was then used offline for DBSCAN clustering.

**TABLE 2 Clustering Performance Comparison Across Different Methods.**

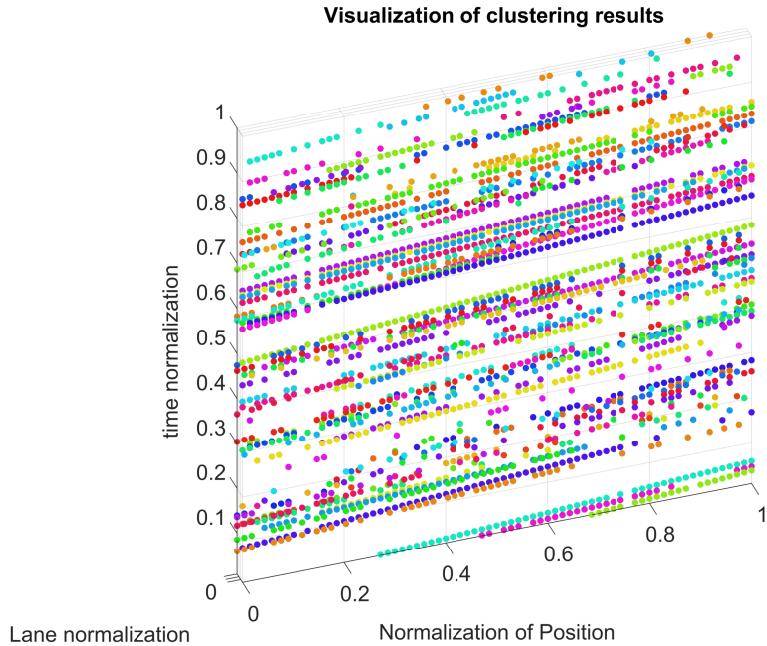
| Method        | JC     | FMI    | RI     |
|---------------|--------|--------|--------|
| Kalman Filter | 0.7150 | 0.8121 | 0.9550 |
| DBSCAN        | 0.6123 | 0.7245 | 0.9124 |
| Ours          | 0.7814 | 0.8683 | 0.9871 |

8 Table 2 shows that our method outperforms both baselines across all metrics, achieving  
9 an FMI of 0.8683 compared to 0.7245 for DBSCAN. These results highlight the advantage of  
10 integrating directionality and Bayesian tuning in real-world conditions.

11 As shown in Figure 8, the proposed method generates clear trajectory clusters, where each  
12 color represents a unique vehicle. Clusters identified as *noise* by the algorithm are excluded from  
13 the visualization. For visualization purposes, we normalized time, sensor position, and lane index  
14 to present trajectories clearly in a unified coordinate space and avoid distortion from uneven value  
15 scales. The Figure 8 demonstrates that the method maintains robust tracking performance even  
16 in the presence of missing data. Notably, even when significant gaps exist within a trajectory, the  
17 algorithm can still correctly associate the fragmented segments, highlighting its strong resilience  
18 to incomplete observations.

## 19 CONCLUSION AND FUTURE WORK

20 In this work, we proposed a robust real-time vehicle tracking method using geomagnetic  
21 sensors. By incorporating directionality constraints and dynamic energy management into a clus-  
22 tering framework, the method improves trajectory accuracy and stability. A Bayesian optimization  
23 framework was employed to adaptively tune hyperparameters under varying traffic conditions. The  
24 algorithm was deployed on the Dongxiangxi Expressway in Jiangxi, China, and achieved superior  
25 performance compared to DBSCAN and Kalman Filter, with an FMI score of 0.8683. Future work  
26 will focus on extending the approach to multi-lane and congested traffic scenarios.



**Figure 8 Cluster result chart.**

## 1 REFERENCES

- 2 1. Azimjonov, J. and A. Özmen, A real-time vehicle detection and a novel vehicle tracking  
3 systems for estimating and monitoring traffic flow on highways. *Advanced Engineering  
4 Informatics*, Vol. 50, 2021, p. 101393.
- 5 2. Bai, Z., G. Wu, X. Qi, Y. Liu, K. Oguchi, and M. J. Barth, Infrastructure-Based Object  
6 Detection and Tracking for Cooperative Driving Automation: A Survey. In *2022 IEEE  
7 Intelligent Vehicles Symposium (IV)*, 2022, pp. 1366–1373.
- 8 3. Bai, J., S. Li, H. Zhang, L. Huang, and P. Wang, Robust Target Detection and Tracking  
9 Algorithm Based on Roadside Radar and Camera. *Sensors*, Vol. 21, No. 4, 2021.
- 10 4. Velazquez-Pupo, R., A. Sierra-Romero, D. Torres-Roman, Y. V. Shkvarko, J. Santiago-Paz,  
11 D. Gómez-Gutiérrez, D. Robles-Valdez, F. Hermosillo-Reynoso, and M. Romero-Delgado,  
12 Vehicle Detection with Occlusion Handling, Tracking, and OC-SVM Classification: A  
13 High Performance Vision-Based System. *Sensors*, Vol. 18, No. 2, 2018.
- 14 5. Pan, Y., F. Huo, Z. Wang, S. Zhai, and Z. Geng, A Millimeter-Wave Radar Tunnel Obstacle  
15 Detection Method Based on Invalid Target Filtering. *Applied Sciences*, Vol. 13, No. 11,  
16 2023.
- 17 6. Čulík, K., V. Štefancová, and K. Hrudkay, Application of Wireless Magnetic Sensors in  
18 the Urban Environment and Their Accuracy Verification. *Sensors*, Vol. 23, No. 12, 2023.
- 19 7. Wang, H., W. Quan, and W. Y. Ochieng, Smart road stud based two-lane traffic surveil-  
20 lance. *Journal of Intelligent Transportation Systems*, Vol. 24, No. 5, 2020, pp. 480–493.
- 21 8. Wang, J., J. Gao, S. Zhao, R. Zhu, Z. Jiang, Z. Chu, Z. Mao, and Y. Shen, From Model to  
22 Algorithms: Distributed Magnetic Sensor System for Vehicle Tracking. *IEEE Transactions  
23 on Industrial Informatics*, Vol. 19, No. 3, 2023, pp. 2963–2972.
- 24 9. Mao, G., T. Fu, and X. Ren, Asynchronous Data Fusion for Vehicle Tracking Using MMW

- 1 Radar and Magnetic Sensor in Tunnel. In *2025 IEEE Wireless Communications and Networking Conference (WCNC)*, 2025, pp. 1–7.
- 2
- 3 10. Wang, K., H. Xiong, J. Zhang, H. Chen, D. Dou, and C.-Z. Xu, SenseMag: Enabling Low-Cost Traffic Monitoring Using Noninvasive Magnetic Sensing. *IEEE Internet of Things Journal*, Vol. 8, No. 22, 2021, pp. 16666–16679.
- 4
- 5 11. Zhang, Z., X. He, and H. Yuan, An Anti-Interference Traffic Speed Estimation System with Wireless Magnetic Sensor Network. *IEEE Transactions on Industrial Electronics*, Vol. 67, No. 11, 2019, pp. 9743–9752.
- 6
- 7 12. Wang, Q., J. Zheng, H. Xu, B. Xu, and Y. Zhu, Roadside magnetic sensor system for vehicle detection in urban environments. *IEEE Transactions on Intelligent Transportation Systems*, Vol. 18, No. 8, 2017, pp. 2217–2226.
- 8
- 9 13. Yin, W., Y. Wang, H. Li, and Z. Wang, Distributed Magnetic Sensor-Based Vehicle Detection with LoRa Communication for Smart City Traffic Monitoring. *IEEE Internet of Things Journal*, Vol. 9, No. 13, 2022, pp. 11084–11094.
- 10
- 11 14. Liu, P. and M.-H. Meng, Online data-driven fuzzy clustering with applications to real-time robotic tracking. *IEEE Transactions on Fuzzy Systems*, Vol. 12, No. 4, 2004, pp. 516–523.
- 12
- 13 15. Bergstra, J. and Y. Bengio, Random search for hyper-parameter optimization. *J. Mach. Learn. Res.*, Vol. 13, No. null, 2012, p. 281–305.
- 14
- 15 16. Powell, M. J. D., A view of algorithms for optimization without derivatives. *Mathematics Today-Bulletin of the Institute of Mathematics and its Applications*, Vol. 43, No. 5, 2007, pp. 170–174.
- 16
- 17 17. Seeger, M., GAUSSIAN PROCESSES FOR MACHINE LEARNING. *International Journal of Neural Systems*, Vol. 14, No. 02, 2004, pp. 69–106, pMID: 15112367.
- 18
- 19 18. Frazier, P. I. and J. Wang, *Bayesian Optimization for Materials Design*, Springer International Publishing, Cham, pp. 45–75, 2016.
- 20
- 21 19. Brun, M., C. Sima, J. Hua, J. Lowey, B. Carroll, E. Suh, and E. R. Dougherty, Model-based evaluation of clustering validation measures. *Pattern Recognition*, Vol. 40, No. 3, 2007, pp. 807–824.
- 22
- 23 20. Bewley, A., Z. Ge, L. Ott, F. Ramos, and B. Upcroft, Simple online and realtime tracking. In *2016 IEEE International Conference on Image Processing (ICIP)*, 2016, pp. 3464–3468.
- 24
- 25 21. Ester, M., H.-P. Kriegel, J. Sander, X. Xu, et al., A density-based algorithm for discovering clusters in large spatial databases with noise. In *kdd*, 1996, pp. 226–231.
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33