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Abstract—Effective and efficient traffic prediction can provide
a reliable data basis for traffic management in Intelligent Trans-
portation Systems (ITS). While various machine learning meth-
ods have been proposed to enhance prediction accuracy in recent
decades, there remain potential issues to be further addressed.
Firstly, the inherent randomness of traffic dynamics usually leads
to some outliers in historical observations, which may deviate the
model parameter estimation when utilizing deep learning-based
models to learn data distribution. Secondly, the spatial correlation
among the road sections may dynamically change over time, posing
challenges for modeling. In addition, due to the complexity of urban
traffic networks, capturing such non-linear spatial dependencies
based on the global road structure may consume huge computa-
tional resources. To address these issues, this paper proposes an
adaptive temporal graph attention network (ATGAN), which is
implemented in two steps: 1) An outlier time series filter (OTSF)
technique is introduced to mitigate the adverse impact of outlier
points and to adaptively learn the distribution of fluctuations of
traffic data; 2) We design a group attention temporal graph convo-
lutional network (GA-TGCN) to model the spatiotemporal features
among neighboring road sections, which is achieved by adjusting
the spatial correlation matrix dynamically in each training epoch
with attention mechanism. We evaluate the prediction performance
of ATGAN on two real-world datasets and the results show that our
model can achieve higher prediction accuracy in less computational
time compared with baseline methods.

Index Terms—Attention mechanism, Intelligent Transportation
Systems (ITS), randomly distributed data, spatiotemporal
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I. INTRODUCTION

THERE has been an exponential increase in the usage of
autonomous vehicles in the past few years. This is due

to a sharp increase in the popularity and improvement of ad-
vanced communication technologies and artificial intelligence
techniques. In urban networks, traffic data can be viewed as time-
series data collected from multiple sensors. Predicting these
traffic conditions is vital for improving autonomous vehicle
technologies and is a foundation for practical applications [1].
For instance, real-time traffic prediction provides a valuable data
foundation for various applications, such as vehicle navigation
systems [2] and predictive bus control frameworks [3]. Also, it
provides the data basis for autonomous vehicles to make adaptive
decisions according to road conditions. Consequently, achieving
accurate and reliable traffic prediction is significant for ITS in
urban networks.

In recent decades, various model-driven and data-driven ap-
proaches have been applied to traffic prediction. Model-driven
techniques such as autoregressive integrated moving average
(ARIMA) [4], ST-ARIMA [5], Kohonen ARIMA [6], seasonal
ARIMA (SARIMA) [7], and Kalman Filtering [8] have been
widely used due to their simplicity and interpretability. Among
data-driven approaches, time-series prediction models such as
Long Short-term Memory (LSTM) [9], Gated Recurrent Unit
(GRU) [10] have been proposed to capture the temporal cor-
relation of traffic information. Also, graph-based models such
as Graph Convolutional Networks (GCNs) [11] have been em-
ployed to model the spatial features of traffic information. In
addition, hybrid models that consider both temporal and spatial
correlations have been developed, such as Temporal Graph Con-
volutional Network (T-GCN) [12] and spatiotemporal attention
mechanisms [13]. These studies have made great progress in
traffic prediction. However, there are still some potential fields
that have value to be studied.
� First, real-world traffic data is always randomly distributed

in the time domain which contains many large fluctuations
and outlier data points. This phenomenon is especially
evident in urban transportation networks caused by the
huge traffic flow and complex traffic environment [14].
When the deep learning-based models try to estimate the
model parameters from the historical traffic data, these
fluctuations and outlier points may disturb the process by
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which the models learn the distributions from the historical
observations, thus having a negative impact on the accuracy
of model parameters estimation [15].

� Second, traffic data of one certain road section is correlated
with that of its neighboring sections, and capturing such
spatial correlation is an important element in traffic predic-
tion tasks. Nonetheless, the spatial correlation is a dynamic
feature that may change over different time steps, and how
to construct a structure to fully consider the dynamics
of this feature is still challenging [16]. In addition, with
the development of urban transportation, the structure of
road networks tends to be complicated, so extracting the
spatial features based on the global network will dilute
the relatively strong correlation among neighboring road
sections and increase the computational complexity, thus
affecting the model’s efficiency.

According to the listed fields, we propose an adaptive
temporal graph attention network (ATGAN) that can improve
the prediction performance of traffic prediction, which contains
two stages. First, an outlier time series filter (OTSF) technique
is proposed to reduce the negative impact of the randomness of
traffic data in the model parameter estimation process. Second,
we apply a group attention temporal graph convolutional
network (GA-TGCN) to fully model the spatiotemporal
features of traffic data.

Specifically, the main contributions are summarized as
follows:

1) We propose an OTSF technique, which can adaptively
learn the distribution of outlier series and smooth non-
stationary traffic data by adding a learnable bias based
on the spatial correlation among each target road section.
Through the OTSF technique, we can achieve more sta-
tionary historical traffic data which serves as the input
of the traffic prediction network, which can improve the
prediction performance when the data has some outlier
time series.

2) We design the GA-TGCN module for accurately modeling
the spatiotemporal features of traffic data among different
sensors. GA-TGCN incorporates a group attention mech-
anism, which constructs a learnable spatial correlation
matrix based on the topological graph information to fully
extract the spatial features among the neighboring road
sections, thus the dynamics of spatial correlation can be
further described and the error propagation of incorrect
spatial feature acquisition can be reduced during the model
training process. In addition, GA-TGCN applies a GRU
model to extract the temporal features from traffic data.

3) We evaluate the performance of ATGAN with two real-
world datasets: the Los-loop and Seattle-loop datasets.
We compare ATGAN with some state-of-the-art methods
and demonstrate the advantages of our model in terms
of prediction performance and computational complexity.
Furthermore, we test the robustness and validate its effi-
ciency under different types of noise.

II. RELATED WORK

Various studies related to traffic prediction models have been
proposed in the past few years. Alghamdi et al. [17] explored
the use of the ARIMA model for predicting traffic congestion
which showed that the ARIMA-based models such as SARIMA
and spatiotemporal ARIMA have limitations in describing vari-
ations of traffic data. Run et al. [18] compared the performance
of ARIMA with that of prediction models for subway traffic
forecasting. Benefiting from the development of artificial intel-
ligence (AI), deep-learning models have raised great concern.
Recurrent Neural Networks (RNNs) [19] are typical models
which show advantages in modeling time series data. Azad and
Islam [20] introduced the prediction model using Google Maps
which took into account real-time traffic information to make
accurate predictions. Shu et al. [21] presented an improved GRU
for short-term traffic flow prediction which used an attention
mechanism to capture the temporal features of traffic data. Also,
some researchers deployed CNN-based models to consider the
spatial correlation [22]. GNN-based models have been widely
applied by some researchers in recent years. Buapang and
Muangsin [23] proposed a spectral GNN prediction model that
utilized the graph theory to capture the spatial correlation of
traffic networks. However, the above-mentioned prediction tech-
niques only consider the temporal or spatial correlation, without
simultaneously capturing the spatiotemporal dependencies from
historical traffic data.

To fully capture the spatiotemporal correlations of data, some
researchers proposed hybrid models for traffic prediction. Zhu
et al. [24] proposed a knowledge-driven spatiotemporal GCNN
model (KST-GCN) for traffic prediction. The proposed model
uses spatial and temporal information to construct a traffic
network graph, which is then fed into the GCNN. Also, Chen
et al. [25] proposed a deep learning-based model for predicting
the traffic flow in the Internet of Vehicles (IoV). The feature
extractor is based on the CNN and LSTM, while the prediction
module is based on the LSTM only. Moreover, spatiotemporal
prediction models such as LSTM-GL-REMF [26], Traffic Graph
Convolutional Recurrent Neural Network (TGC-LSTM) [11],
Graph Convolutional Neural Network with Data-Driven Graph
Filter (GCN-DDGF) [27] have shown superiorities in traffic
state prediction. It has been proved by the literature that hybrid
models can model spatiotemporal features. However, the graph
information remains static in the model training process which
cannot accurately capture the spatiotemporal correlations of
traffic conditions.

Further, the attention mechanism has raised great concern
in recent years due to its advantages in fully capturing the
spatiotemporal correlations. Xie et al. [28] proposed a dynamic
spatiotemporal relation graph to predict the subway flow, and
apply a long-term prediction module based on the transformer.
Zhang et al. [29] developed a STRGAT model that applied the
deep residual attention module to capture the dynamic spatial
characteristics. Moreover, Abdelraouf et al. [30] proposed an
attention-based network for freeway traffic speed prediction
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Fig. 1. An example of road network.

which uses multiple encoders and a decoder to extract spatiotem-
poral correlations from historical traffic data and generate the
predicted traffic speed respectively.

Attention-based deep learning models can accurately con-
sider the complex relationship of traffic data. For example,
a hierarchical attention GCN fusing multi-sensor signals [31]
was proposed for remaining useful life prediction. The model
used a hierarchical attention mechanism to extract important
features from multi-sensor signals, which is further fused into
a GNN. A novel spatiotemporal self-attention network [32]
was proposed for video saliency prediction. Duan et al. [33]
proposed a fully dynamic self-attention spatiotemporal graph
network that uses a fully dynamic self-attention mechanism
to capture the spatiotemporal correlations of traffic flow data.
Similarly, self-attention bi-LSTM network [34], dual attention-
based federated learning approach [35] and GraphSanet [36]
use a self-attention mechanism to capture the spatiotemporal
features in observed data. However, these methods can only
capture spatial or temporal dimensions of traffic information
because the input and output of the attention mechanism are
two sequences of factors.

III. PRELIMINARIES

The road network can be considered as a directed graph G =
(V, E ,A), where V is a collection of vertices which represents
the road sections in the network, E represents the connection
states among road sections and N = |V| denotes the number of
road sections; A ∈ RN×N is the binary adjacency matrix with
zero entries on the diagonal, where Ai,j denotes the physical
connection between road section i and road section j (Ai,j = 1
represents there is a connection, while Ai,j = 0 denotes that
there is no connection, and Ai,i = 0). For example, Fig. 1
shows the connectivity of the five vertices where the solid line
indicates that there is a connection between vertices, and the
corresponding adjacency matrix can be described by:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 0

1 0 0 1 0

1 0 0 1 0

1 1 1 0 1

0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

The traffic conditions over T time steps can be considered as
a two-dimensional matrix X ∈ RN×T on graph G and the traffic
condition at time t can be represented as Xt ∈ RN×1.

Problem Studied: As shown in Fig. 2, given the observed data
of the historical T time stepsX history ∈ RN×T , we aim to build
a deep-learning model being able to predict the traffic data of the
next future P time steps by fully extracting the spatiotemporal
features from the historical data, which can be shown as:

Y = F(Xhistory) (2)

where F denotes the function of our proposed model.
Spatiotemporal correlations of traffic information: For a bet-

ter understanding of our paper, here we give an explanation
of the spatiotemporal correlations of traffic information among
different road sections. That is, the traffic data of one road section
at a certain time step is correlated with the historical observations
of this road section and the traffic data of other road sections in
this road network [12].

IV. ADAPTIVE TEMPORAL GRAPH ATTENTION NETWORK

Fig. 3 illustrates the structure of the ATGAN model, where
the outlier time series filter (OTSF) is applied to smooth the
outlier data points in the historical observations, and the group
attention GCN model and GRU model are applied to fully model
the spatiotemporal features from the filtered data and achieve
the prediction results. In addition, we apply the structure of the
Residual Network (ResNet) to ensure the stability of the model
training process [37].

A. Outlier Time Series Filter

The real-world traffic data is usually non-stationary and has
some outlier points over the time domain, which may negatively
affect the model parameters estimation in the model training
process [38]. To overcome this limitation, we propose the Outlier
Time Series Filter (OTSF) technique by adding a learnable bias
to the historical observations which can adaptively smooth the
outlier time series with the attention mechanism.

Fig. 4 presents the framework of the proposed OTSF tech-
nique. Firstly, we take the adjacency matrix A ∈ RN×N to
describe the topological structure of the road network. Based on
the adjacency matrix, we employ the attention score to calculate
the spatial correlation coefficient between each road section:

G =
〈ReLU(WqA),ReLU(WkA)〉√

D
(3)

αi,j =
exp(Gi,j)∑N

i=1

∑N
j=1 exp(Gi,j)

(4)

where 〈•, •〉 represents the inner product operator, G ∈ RN×N

is the attention score of the adjacency matrix, ReLU is the
activation function which is used to maintain positive corre-
lations between sensors, Wq and Wk are two trainable model
parameters, Gi,j represents the i-th value of the j-th column of
attention score matrix G, D represents the dimension of A, α is
the spatial correlation matrix.
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Fig. 2. Problem formulation.

Fig. 3. Structure of ATGAN.

As the spatial correlation between a sensor and itself is always
1, the spatial correlation coefficient matrixS can be obtained by:

S = α+ IN (5)

where IN is a N-dimensional identity matrix.
In the spatial correlation coefficient matrix S, we consider

each value Sm,n as the spatial correlation coefficient between
road section m and road section n. Based on S, we construct
an adaptive bias matrix based on the historical information and
adjacency matrix. The procedure of bias construction is shown
below.

First, we extract the traffic information for each time step and
separate the correlation coefficient matrix S to N vectors:

X = [X1, X2, . . ., XT ], Xt ∈ R
1×N (t = 1, 2, . . ., T ) (6)

S = [S1, S2, . . ., Sn], Si ∈ R
1×N (i = 1, 2, . . ., N) (7)

Then, we construct a learnable bias B that fully utilizes the
spatial correlation of traffic data. That is, according to the his-
torical observations X and the correlation coefficient matrix S,
we construct spatial correlation-based biasB using the weighted
sum of traffic data of each road section and the spatial correlation
coefficient vector of the corresponding road section:

Bi,j = (Xj,1, Xj,2, . . ., Xj,N ) · (Si,1, Si,2, . . ., Si,N )T (8)

where Bi,j represents the i-th value the j-th column of B.

In matrix S, we use Si to represent the spatial correlation
between road section i and the other target road sections. Hence,
we refine (8) as:

Bi,j =
N∑

m=1

Xj,mSi,m (9)

After the construction of the trainable bias, we use the sum of
historical dataX and biasB as the training data I in the following
model training process:

Ii,j = Xi,j +Bi,j (10)

By applying OTSF, the variance of historical data can be re-
duced by equally sharing the fluctuations caused by the out-
liers. Specifically, the procedure of OTSF can be found in
Algorithm 1.

B. Group Attention Temporal Graph Convolutional Network

In this paper, we design the GA-TGCN model to extract
the spatiotemporal features of traffic information. Fig. 5 shows
the structure of the GA-TGCN model, which applies a group
attention GCN (GA-GCN) to capture the spatial dependence
and a GRU model to capture the temporal dependence of the
traffic information.

Group attention GCN: To fully model the dynamic spatial
features among neighboring road sections, we propose a Group
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Fig. 4. The framework of OTSF technique.

Fig. 5. Structure of GA-TGCN (when k=3).
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Algorithm 1: Procedure of Outlier Time Series Filter.

Input: Original traffic data matrix X ∈ RN×T ; Adjacency
matrix A ∈ RN×N ;

Output: Filtered training data I;
1: Initialize two parameters Wq , Wk for adjacency

matrix.
2: Extract data of each time step from X .
3: G← 〈ReLU(Wq×A),ReLU(Wk×A)〉√

D
.

4: α← exp(Gi,j)
∑N

i=1

∑N
j=1 exp(Gi,j)

.

5: S ← α+ IN .
6: for i = 0 to T do
7: for j = 0 to N do
8: Bi,j ←

∑N
m=1 Xj,mSi,m.

9: Ii,j ← Xi,j +Bi,j .
10: end for
11: end for
12: Get training data I based on X , A.
13: return I;

Attention Graph Convolutional Network (GA-GCN) which con-
siders the spatial correlation of traffic data as a learnable parame-
ter during model training. By applying the group attention mech-
anism, the spatial correlation coefficient among multi-located
sensors can be updated in each training epoch, which can further
extract the spatial correlation from historical data and reduce
the error propagation caused by incorrect spatial correlation
representation during a deep learning model training process.
The process of GA-GCN is shown in the following contexts.

When the number of road sections N becomes large, the
computational complexity goes high when we directly model the
global road network because we need to compute N 2 attention
scores. In addition, when modeling the global road network,
the correlation among road sections that are geographically far
apart is also calculated, and the focus of attention may be shifted
which will dilute the spatial correlation among the adjacent road
sections, thus the prediction performance can be affected. To
address these issues, we model the spatial features of traffic data
which focuses on the correlation among the neighboring road
sections.

As shown in Fig. 5, we first partition N road sections into K
groups (K=3 in Fig. 5 as an example) based on the adjacency
matrixA, where each group containsN/K sensors and it should
be noted that N/K should be a positive integer, shown as:

A =

⎡
⎢⎢⎢⎢⎣

A1,1 A2,1 · · · Ak,1

A1,2 A2,2 · · · Ak,2

...
...

. . .
...

A1,k A2,k · · · Ak,k

⎤
⎥⎥⎥⎥⎦ (11)

To enhance the correlation of road sections, we ignore the
impact of those low-correlation road sections and calculate the
correlation of the road segments within each group, so that we
only calculate the spatial correlation coefficient grouped on the
diagonal of the adjacency matrix (for example, in Fig. 5, such
groups are A1,1, A2,2 and A3,3). According to these groups, we

employed the scaled dot-product attention approach to compute
the spatial correlation of the traffic data among the corresponding
road sections:

βi,i =
ReLU(W i

mAi,i) ·ReLU(W i
nAi,i)

|W i
mAi,i||W i

nAi,i| (12)

Gi,i =
exp(βi,i)∑N

k
i=1

∑N
k
j=1 exp(βi,i)

(13)

where Ai,i ∈ R
N
K×N

K (i = 1, 2, . . ., k) represents the subgroups
on the diagonal of the adjacency matrix A, W i

m and W i
n are

learnable parameters allocated for Ai,i to achieve attention
scores, and Gi,i are spatial correlation coefficient matrix of Ai,i.

Then, we construct the coefficient correlation matrix of the
global road network C by splicing Gi,i into the correlation
coefficient matrix:

C =

⎡
⎢⎢⎢⎢⎣

G1,1 O · · · O

O G2,2 · · · O
...

...
. . .

...

O O · · · Gk,k

⎤
⎥⎥⎥⎥⎦ (14)

where O ∈ R
N
K×N

K is an all-zeros matrix.
Hence, the learnable correlation coefficient matrix of the road

can be constructed, wherein each road section focuses on the
spatial correlation between itself and that of the neighboring
road sections.

Based on the coefficient matrix C and input data I from the
OTSF filter (in Section IV-A), we use a GCN model to extract
the spatial features. Here, we first estimate the matrix with added
self-connections C̃ and the degree matrix D̃:

C̃ = C + IN (15)

D̃ =
∑
j

C̃i,j (16)

where C̃i,j denotes the value at the j-th column and the i-th row
in C̃.

Then, the GCN network can be built by stacking multiple
convolutional layers. In this paper, we use two layers of GCN
structure to improve the prediction performance:

O = σ(S̃ReLU(S̃·IW1)W2) (17)

where σ is the sigmoid function, S̃ = D̃−
1
2 C̃D̃−

1
2 represents

the pre-processing step, W1 and W2 are the weighting matrices
allocated for the two layers, and O denotes the output of the
GA-GCN model.

Gated Recurrent Unit: In GA-TGCN, we apply a GRU model
to extract the temporal features of traffic data. GRU network is
an extension of the Recurrent Neural Network (RNN), which has
advantages in modeling the temporal features of spatiotemporal
data. From Fig. 5, it can be seen that in GRU, the cell gate is
used to store the data of the current time step, and the update
gate is applied to control the extent to which state information
from the previous moment is transmitted to the current state, and
the reset gate is applied to capture short-term correlation in time
series.
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Fig. 6. Locations of sensors in Los-loop datatset.

Given the input data It at time t, the specific process of GRU
is shown as follows, where ut, rt, ct are the state of update gate,
cell gate and reset gate, Wu, Wr, Wr and bu, br, br are the
weights and bias for GRU, respectively:

ut = σ(Wu[It, ht−1] + bu) (18)

rt = σ(Wr[It, ht−1] + br) (19)

ct = tanh(Wc[It, (rt · ht−1)] + bc) (20)

ht = ut ∗ ht−1 + (1− ut) ∗ ct (21)

C. Model Training Process

As shown in Fig. 3, ATGAN first utilizes an OTSF filter to
smooth the randomly distributed traffic data and reduce the neg-
ative impact of outlier data points in the model training process,
then applies a GA-TGCN model to extract the spatiotemporal
features of traffic data. During training, we update all the model
parameters in the ATGAN model through back-propagation by
minimizing the loss between the prediction results and real data:

L = ||Yt − Ŷt||+ λLreg (22)

whereYt represents the real traffic data, Ŷt is the predicted value,
λ is the hyper-parameter, and Lreg is the L2 regularization term.

V. EXPERIMENTS AND DISCUSSION

A. Data Description

We evaluate the prediction performance of the ATGAN model
with two real-world datasets: the Los-loop dataset and the
Seattle-loop dataset.

1) Los-loop dataset: The dataset provides valuable informa-
tion about traffic speed in Los Angeles between March 1–7,
2012. The data was gathered from 207 sensors located through-
out the county (locations of sensors can be seen in Fig. 6), and the
sampling time interval is 5 minutes. The dataset consists of two
parts. The first part is a two-dimensional matrix that denotes the
speed data over all time steps, wherein each row represents the
traffic data of each sensor at all time instants, and each column
represents the speed data of all sensors at a single time step.

Fig. 7. Locations of sensors in Seattle-loop datatset.

2) Seattle-loop dataset: The dataset describes the traffic data
collected from the loop sensors in the Seattle area in 2015 (the
locations of sensors can be seen in Fig. 7), where the sampling
time interval is 5 minutes. The dataset contains two parts. The
first part is a two-dimensional matrix that represents the spa-
tiotemporal information of traffic speed data from multi-located
sensors on the main stems at different time steps. The second part
is an adjacency matrix which describes the physical connections
among sensors in the road network.

B. Computing Environment

The detailed setting of the computing environment of this
paper is shown as follows. The experiments are conducted using
a server with 16 CPU cores (Intel i7 13700k) and one GPU (RTX
3060). The version of Python is 3.7, we use Scikit-learn and
Tensorflow for the network construction.

C. Metrics

In this paper, to validate the superiority of our model, we
apply the same as the metrics in [12], i,e., Root Mean Square
Error (RMSE), Mean Square Error (MAE), Accuracy (ACC),
Coefficient of Determination (R2) and Explained Variance Score
(VAR). The metrics are computed by the following equations,
where yi,j and ypredi,j represent the real traffic data and the
prediction value of the j-th time step in the i-th road respectively,
where fvar refers to the variance function:

RMSE =

√√√√ 1
MN

·
M∑
j=1

N∑
i=1

(yi,j − ypredi,j )2 (23)

MAE =
1

MN
·

M∑
j=1

N∑
i=1

|yi,j − ypredi,j | (24)

ACC = 1− ||yi,j − ypredi,j ||F
||yi,j ||F (25)
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Fig. 8. Changes of prediction accuracy with Los-loop dataset. (a) Changes in
RMSE. (b) Changes in MAE.

R2 = 1−
∑M

j=1

∑N
i=1 (yi,j − ypredi,j )2

∑M
j=1

∑N
i=1 (yi,j − Ȳ )2

(26)

V AR = 1− fvar(Y − Y pred)

fvar(Y )
(27)

D. Baselines

In this paper, we compare the prediction performance of AT-
GAN with the following baseline methods: (1) Auto-regressive
integrated moving average (ARIMA) [39]; (2) Historical aver-
age (HA) [40] (3) Support vector regression (SVR) [41]; (4)
Long short-term memory (LSTM) [42]; (5) Temporal graph
convolutional network (T-GCN), which is a hybrid model that
combined with GCN and GRU [43]; (6) Attention temporal
graph convolutional network (A3T-GCN), which adds a self-
attention layer on the output of T-GCN network to capture
the global trends of temporal correlation of traffic data [13];
(7) Traffic graph convolutional long short-term memory neural
network (TGC-LSTM) [11], which combines GCN with LSTM
and uses an arrival matrix to replace the adjacency matrix.

E. Prediction Performance

The number of hidden units is an important hyper-parameter
in deep-learning models. Hence, to evaluate the universality of
ATGAN, we set the number of hidden units to 8, 16, 32, 64, 128,
respectively and test the prediction accuracy of ATGAN given
by RMSE and MAE with the two real-world datasets.

As shown in Figs. 8 and 9, the prediction accuracy of AT-
GAN increases with the larger number of hidden units, but the
increasing rate becomes smaller when the number reaches 64. In
addition, the prediction accuracy remains stable under different
settings of hidden units, which validates the effectiveness and
stability of our model.

In real-world datasets, various road sections may exhibit dis-
tinct traffic conditions at varying time steps. Hence, we randomly
selected data from four road sections for testing to adequately
verify the effectiveness of our proposed model. In particular,
upon configuring the number of hidden units to 64, the prediction
outcomes of ATGAN using the two datasets are illustrated in
Figs. 10 and 11, respectively.

Fig. 9. Change of prediction accuracy with Seattle-loop dataset. (a) Changes
in RMSE. (b) Changes in MAE.

Fig. 10. Prediction results tested with the Los-loop dataset. (a) Road section
1. (b) Road section 2. (c) Road section 3. (d) Road section 4.

Fig. 11. Prediction results tested with the Seattle-loop dataset. (a) Road
Section 1. (b) Road section 2. (c) Road section 3. (d) Road section 4.
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TABLE I
PREDICTION PERFORMANCE BASED ON THE LOS-LOOP DATASET

TABLE II
PREDICTION PERFORMANCE BASED ON THE SEATTLE-LOOP DATASET

Both the two figures illustrate the prediction results obtained
by ATGAN are in good line with the real data, which indicates
the effectiveness of ATGAN. Specifically, when the real data
are stationary, the prediction results are more precise. When
the data has some large fluctuations, the results will deviate
from the real data to some extent, i.e., the results from time
step 270 to time step 330 in Fig. 11. Moreover, the curve of
predicted results is smoother than that of real data. This is mainly
because the GCN-based models use a smooth filter to capture the
topological structure by moving the filter, leading to a smaller
change compared with the real data.

F. Comparison

Prediction performance comparison: To demonstrate the su-
periority of our model, we compare the prediction performance
of ATGAN with the baseline methods. The setting of hyper-
parameters is listed as follows: the number of hidden units is
64, the learning rate is set as 0.001, the batch size is 33, and the
number of epochs for model training is 300.

By the evaluation metrics given in Section V-B, we first
compare the prediction accuracy based on the Los-loop dataset.

The results of the accuracy comparison are shown in Table I,
it can be seen that ATGAN achieves the highest prediction
accuracy among all the baseline methods. In addition, within
all tested methods, hybrid deep learning-based models includ-
ing ATGAN, TGC-LSTM, A3T-GCN, and T-GCN perform far
better than other baseline methods. This is mainly because the
hybrid models extract both spatial and temporal features of
traffic data while the single prediction models such as LSTM
and SVR only capture one scale of feature (temporal feature or
spatial feature) so that the hybrid models can better couple the
spatiotemporal correlations and achieve higher prediction accu-
racy. Specifically, among all hybrid prediction models, RMSE
of ATGAN are improved by approximately 14.9%, 14.3%,
and 17.4% compared with TGC-LSTM, A3T-GCN, and T-
GCN; MAE of ATGAN are improved by approximately 18.7%,
19.7% and 23.6% compared with TGC-LSTM, A3T-GCN,
and T-GCN.

Then, we compare the prediction accuracy of ATGAN with
that of baseline methods based on the Seattle-loop dataset, and
the results are shown in Table II. Similarly, ATGAN obtains the
highest prediction accuracy among baseline methods and the
prediction accuracy of hybrid deep learning-based models is
higher than the single prediction models. Also, we mainly focus
on the comparison of prediction accuracy between ATGAN and
hybrid models. We find that RMSE of ATGAN is improved by
approximately 3.6%, 16.5%, and 10.0% compared with TGC-
LSTM, A3T-GCN, and T-GCN; MAE of ATGAN are improved
by approximately 7.0%, 21.5% and 14.3% compared with TGC-
LSTM, A3T-GCN, and T-GCN.

Furthermore, to demonstrate the superiority of ATGAN in
predicting traffic data with outlier time series, we extract the
periods of data with large fluctuations and compare the predic-
tion performance of ATGAN with the hybrid prediction models
including TGC-LSTM, A3T-GCN, and T-GCN.

As shown in Fig. 12, we find that compared with the baseline
methods, prediction results obtained from ATGAN maintain a
higher degree of agreement with real data with the four periods
of data with several large fluctuations selected from the two
datasets. Further, all methods predict poorly at the local mini-
mum/maximum, but the results obtained by ATGAN have the
highest approximation with the real data, which evaluates the ef-
fectiveness of ATGAN in predicting non-stationary traffic data.

Computational complexity comparison: Efficient traffic pre-
diction can greatly improve the efficiency of ITS, so the com-
putational complexity is an important factor to be measured. In
this paper, we test the computational complexity of ATGAN in
terms of the computational time and space complexity for model
training.

First, we test the computational time as well as the prediction
accuracy under different numbers of hidden units. As shown in
Table III, it can be seen that for both two datasets, a larger number
of hidden units can lead to better prediction performance with
some sacrifices in computational efficiency. Hence, it is neces-
sary to strike a balance between accuracy and computational
time to ensure both effectiveness and efficiency.
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Fig. 12. Prediction performance comparison of traffic data with outlier time series. (a) Los-loop dataset from time step 1 to time step 100. (b) Los-loop dataset
from time step 297 to 397. (c) Seattle-loop dataset from time step 100 to time step 200. (d) Seattle-loop dataset from time step 250 to 350.

Fig. 13. Adding noise. (a) Adding Gaussian noise to the Los-loop dataset.
(b) Adding Gaussian noise to the Seattle-loop dataset. (c) Adding Poisson noise
to the Los-loop dataset. (d) Adding poisson noise to the Seattle-loop dataset.

Then, we compare the computational time of ATGAN with
that of baseline methods, it should be mentioned that the num-
bers of hidden units in ATGAN are set to 8, 16, 32, and 64,

TABLE III
COMPUTATIONAL TIME AND PREDICTION ACCURACY OF ATGAN UNDER

DIFFERENT SETTINGS OF HIDDEN UNITS

respectively and the number of hidden units in baseline methods
is set to 64, as shown in Table IV. From Tables I and II, it
is easy to find that hybrid prediction models including AT-
GAN, TGC-LSTM, A3T-GCN, and T-GCN performs far better
than the other baseline methods. Hence, although it shows that
the computational time of single prediction models including
LSTM, SVR, ARIMA, and HA is much lower than that of
hybrid prediction models, we mainly conduct a comparison of
computational complexity among these four hybrid models.
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TABLE IV
COMPUTATIONAL TIME COMPARISON

TABLE V
SPACE COMPLEXITY OF ATGAN UNDER DIFFERENT SETTINGS OF HIDDEN

UNITS

When we set the number of hidden units to the same value,
the computational time of ATGAN is higher than the other
hybrid prediction models. However, combining Tables I, II,
and IV, it can be seen that when the number of hidden units
in ATGAN is small (i.e., 8, 16, 32), the prediction accuracy is
still higher than the other baselines (the number of hidden units
in baseline methods is 64) but the computational time is lower,
which validates the efficiency of ATGAN as well.

Space complexity is also one of the important factors to
evaluate computational complexity. Referred to [44], we utilize
floating point operations (FLOPs) and numbers of parameters
(nparameters), which are applied in many studies, as metrics for
calculating space complexity.

Initially, we assess the space complexity of ATGAN across
various configurations of hidden units. As demonstrated in
Table V, it is evident that an increase in the number of hidden
units correlates with a rise in both the number of floating point
operations per second (FLOPs) and the number of parameters.
Notably, when the unit is G, the increase in FLOPs remains
marginal. This observation suggests that, despite the growing
number of hidden units, our model does not impose a significant
additional burden on computational resources.

TABLE VI
SPACE COMPLEXITY COMPARISON BETWEEN ATGAN AND HYBRID BASELINES

(64 HIDDEN UNITS)

Typically, the space complexity of hybrid deep-learning mod-
els tends to exceed that of single prediction models. Mean-
while, in light of the imperative to maintain high prediction
accuracy, we conduct a comparison of the space complexity
of ATGAN against several hybrid prediction methods including
TGC-LSTM, A3T-GCN, and T-GCN. As illustrated in Table VI,
we find that when the hidden units are set as 64, the space
complexity of ATGAN is higher than that of the baseline
methods without a significant disparity in magnitude. However,
similar to the comparison performance in computational time,
it becomes evident that for hidden unit settings of 8, 16, and 32,
the predictive performance of ATGAN consistently outperforms
that of the hybrid baseline methods (the hidden units of baseline
methods is set as 64), but the number of hidden units of ATGAN
is lower in most cases, underscoring the exceptional efficiency
of our proposed model.

In conclusion, despite the small number of hidden units, the
prediction accuracy of ATGAN can remain at a high level, which
is higher than the recent hybrid prediction models such as TGC-
LSTM and T-GCN. That is, at similar prediction accuracy, the
computational time is lower than the baseline methods, and the
space complexity and the space complexity of our model will
not significantly increase, which also indicates the efficiency of
ATGAN.

G. Robustness

The real-world datasets usually contain noise which is gen-
erated in the data-collecting process. Hence, robustness is one
of the important measurements to evaluate the effectiveness of
the prediction model. In this paper, we add two types of com-
mon noise to the historical observations and test the robustness
of ATGAN, respectively. First, we add a Gaussian-distributed
noise which obeys N ∈ (0, σ2), where σ ∈ (0.2, 0.4, 0.8, 1, 2).
Then, we add the Poisson-distributed noise P (λ), where λ ∈
(1, 2, 4, 8, 16). It should be mentioned that the value of the noise
matrices is normalized to be between 0 and 1.

The prediction accuracy of the robustness test given by RMSE
and MAE for ATGAN is shown in Fig. 13. From Fig. 13, it can
be seen that the change in prediction accuracy is small when
we add such two different distributions of noise to the historical
data, which proves that the ATGAN model is robust and can
solve the issues caused by different types of noise.
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VI. CONCLUSION

In this paper, we introduce a novel approach called Adaptive
Temporal Graph Attention Network (ATGAN) to predict future
traffic data with consideration of outlier data points. Specifically,
ATGAN is implemented in two stages: (1) an outlier time series
filter (OTSF) is proposed, which mitigates the negative impact
of outlier data points in historical observations by constructing
an adaptive bias to learn the distribution of traffic data; during
model training; (2) group Attention T-GCN (GA-TGCN) net-
work is used to accurately capture the spatiotemporal correla-
tions in traffic information. GA-TGCN utilizes a group attention
GCN network to model the spatial factors based on road section
connections, and a GRU structure to capture the temporal cor-
relation in traffic data. We evaluate the prediction performance
of ATGAN with two real-world datasets: the Los-loop dataset
and the Seattle-loop dataset and compare the performance of
ATGAN with recent baseline methods. The experimental results
highlight the superiority of ATGAN over the baseline methods,
showing that ATGAN consistently achieves the best prediction
performance across various evaluation metrics.

In future research, we plan to extend the concept of the OTSF
technique to reconstruct historical data, allowing the spatiotem-
poral correlations of traffic data to adapt to dynamic changes in
traffic conditions which aims to further enhance the prediction
performance. Moreover, multi-source data-based traffic predic-
tion has garnered considerable interest recently. Therefore, the
integration of multi-source traffic information into the group
attention map in ATGAN, leveraging the multi-scale graph
attention mechanism to comprehensively extract spatiotemporal
features, represents a promising avenue for research. Mean-
while, developing a parallel model training method is also an
effective approach to adapt our model to tailor our model for
multi-source traffic prediction tasks.
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