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Vehicles Selection Algorithm for Cooperative
Localization Based on Stochastic Geometry in

Internet of Vehicle Systems
Wengang Li, Mohan Liu, Tianfang Chen, Guoqiang Mao

Abstract—In the face of the high density of vehicle distribution
in urban areas, the self-organized network formed between vehi-
cles has suffered serious communication interference, which will
lead to the interruption of communication between vehicles and
the inability of collaborative positioning. However, this issue has
received little attention, and traditional cooperative positioning
methods are no longer suitable for the network of high-density
vehicles. In order to solve the cooperative localization issue in
high-density vehicle networks, This paper proposes a region-
constrained vehicle cooperative localization algorithm based on
stochastic geometry. By setting restricted areas of vehicles, the
communication capability and network capacity between vehicles
are effectively improved. Then, to take full advantage of the
density of the Ultra-high density vehicles network, the Geometric
Dilution of Precision (GDoP) metric is used to dynamically intro-
duce cooperative vehicles. By dynamically selecting vehicles, the
value of GDoP decreases significantly with the increase of vehicle
density. Finally, experimental simulations show that the network
capacity in the vehicle system is improved by about 71% at the
maximum interruption probability when using vehicle selection
with restricted areas. Furthermore, the positioning performance
of vehicles improves continuously with the increasing density of
the cooperative vehicle network.

Index Terms—Geometry dilution of precision(GDoP), Stochas-
tic geometry, Signal to interference and noise ratio, System
Capacity, Vehicle selection

I. INTRODUCTION

W ITH the advent of 5G era, Internet of Vehicles technol-
ogy has been flourishing. The Internet of Vehicles takes

vehicles in motion as information sensing objects, realizing
network connection with surrounding objects through wireless
communication technology. Among them, high-precision po-
sitioning technology is one of the key technologies of Internet
of Vehicles. In order to improve the positioning accuracy
of vehicles, many researchers have proposed multi-sensor-
based fusion localization techniques [1-3], where IoT sensor
devices are installed in each vehicle. However, the integration
of multiple sensors in vehicles leads to an increase in the cost
and power consumption of Internet of Vehicles. Unlike multi-
sensor fusion localization techniques, collaborative vehicle
localization [4-9] uses only the connectivity information of
the vehicles in the network to achieve localization, avoiding
the integration of multiple sensors in the vehicle. Current
collaborative vehicle positioning generally relies on GPS nav-
igation systems, but in urban areas, satellite signals loss is a
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challenging issue due to the effects of tall and dense build-
ings [10-13]. In addition, the expensive satellite receivers of
vehicle terminals are not suitable for network of high density
vehicles. Therefore, Vehicle-to-vehicle communication(V2V)-
based cooperative vehicle localization methods are crucial. In
V2V cooperative vehicle localization, these systems achieve
precise positioning through inter-vehicle ranging information.
However, when multiple vehicles are present in a certain area,
choosing which vehicles to communicate with will affect the
resulting positioning accuracy. Therefore, vehicle selection is
crucial. The vehicle location information obtained by ranging
techniques depends heavily on the vehicle topology, it is
crucial to make a suitable vehicle selection. Therefore, this
paper focuses on the vehicle selection strategy.

In cooperative localization, node selection has attracted the
interest of many researchers. Most current node selection
algorithms utilize fixed anchor nodes as auxiliary nodes for
collaborative localization. However, the positioning perfor-
mance of the system varies with the selection of anchor nodes.
In wireless networks, the node selection algorithm based on
path loss factor [14] calculates the path factor of signal
transmission using the RSSI data measured in the system to
obtain the point with the minimum path loss factor. However,
the RSSI approach is susceptible to complex environments
and multipath effects, especially in urban areas. The distance-
based node selection algorithm uses the RSSI data measured
in the system to calculate the test distance between the target
node and the neighboring nodes and selects the neighboring
nodes that are closer to the target node as auxiliary nodes.
This method is also not applicable in urban environments due
to the limitations of the RSSI method. The node selection al-
gorithm, based on EFIM [15-16], initially computes the Fisher
Information Matrix (FIM) for nodes using the signal model.
It then decomposes and quantizes the FIM to derive EFIM,
introduces SPEB to assess positioning accuracy, and ultimately
chooses N nodes with the smallest SPEB as auxiliary nodes.
However, the algorithm involves a large number of matrix
operations, making it unsuitable for scenarios with a large
number of nodes. The energy-based node selection algorithm
[17-18] determines the communication radius of a node based
on the energy of the system and selects the nodes within the
communication range of the target node as auxiliary nodes.
However, this method can only communicate within a fixed
range of a node and cannot benefit the presence of high-density
dynamic vehicles in the city. The distributed RSSI-based node
selection algorithm [19] selects nodes with larger RSSI data as
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auxiliary nodes in the entire network, based on the RSSI data
received by the sensor nodes. However, it still cannot address
the scenario of high-density vehicle distribution in urban areas.

In addition to the above algorithms, there are also algorithms
that study the geometric deployment of anchor nodes. By
deploying anchor nodes in different regions, the unknown
nodes in the region can be located more accurately. Therefore,
it is necessary to systematically study the impact of anchor
node deployment mode on positioning performance. Some
researchers have also proposed many anchor node deployment
schemes based on optimal positioning performance. Litera-
ture[20] proposes to deploy the anchors where the MSE lower
bound is minimized to minimize the MSE. And [21] propose
an optimization based method for joint anchor deployment
and power allocation to achieve high-precision localization
in wireless networks. In order to optimize the deployment of
anchor nodes and make the estimation accuracy of positioning
parameters more accurate, [22] formulates the optimal anchor
placement problem in the form of the Fisher information
matrix combination. Besides, due to geographical constraints,
communication problems between sensors, and security issues,
nodes cannot be simply placed in any position. In the literature
[23], a method is proposed based on an optimality criterion
to determine the optimal sensor-target geometry considering
distance localization while accounting for sensor location
constraints. However, in certain specific environments, nodes
are dynamically randomized and cannot be deployed as anchor
nodes in advance. Therefore, positioning methods based on
distance distribution are widely proposed. Literature [24-25]
proposes a scheme called Relative Urban Positioning System
(RUPS) to address the relative distance fixing problem. De-
termining the positions of urban vehicles using GSM-aware
trajectories has achieved good temporary stability, geographic
uniqueness, and fine resolution. Literature [26] proposes an
online distributed neighbor distribution estimation scheme,
which effectively captures the distribution of surrounding
vehicles and supports a more adaptive Media Access Control
(MAC) protocol. Literature [27] proposes a node selection
algorithm based on the location accuracy factor. This algorithm
uses the contribution value of nodes with a contribution GDOP
value greater than the threshold as the evaluation criteria for
the overall network, and selects them as auxiliary nodes.
By using GDoP as the evaluation standard of positioning
performance criteria for positioning performance can avoid
the need to deploy anchor nodes in advance. However, in
the context of a 5G-based mobile vehicular self-organizing
network, there will be a large number of vehicular nodes
connecting to the network. Combining the aforementioned
works, there are currently few dynamic and stochastic methods
adapted for high-density scenarios in VANETs.In the future
5G-enabled V2V communication networks, the high density
distribution of vehicles can easily lead the system into a
state known as interference-limited mechanism. This results
in increased interruption probabilities, reduced capacity for
accommodating nodes in the network, blocked communication
links, and decreased precision in collaborative positioning. On
one hand, VANETs are a type of wireless network established
in the field of vehicular networking based on Mobile Ad-

Hoc Network (MANET), which inherently operates in an
interference-limited environment, where interference escalates
with the increase in network node density. On the other
hand, the development of 5G networks not only increases
network capacity by over a hundredfold but also promotes
the densification of vehicles. Consequently, addressing the key
challenge of enhancing the positioning accuracy and continuity
of vehicles in vehicular networks through V2V cooperative
positioning in high-density, high-interference networks, and
leveraging the advantages of densification in 5G networks is
imperative in the face of future trends towards high-density
networks. So far as we all know, no works have focused on
the effect of density and interference.

This paper is interested to the research of vehicle collabo-
rative location in high-density vehicle scenarios and attempts
to solve the interference between vehicles. In this paper, we
propose a cooperative vehicle selection algorithm for Ultra-
high density vehicles distribution. We model the stochastic
geometry of the Ultra-high- density vehicles in the city and
reduce the interference between vehicles by using the area
restriction mechanism, and then use GDoP as the evaluation
criterion for the cooperative vehicle selection.

In this paper, we primarily encounter three challenges.
First, when analyzing cooperative strategies for vehicles, it is
necessary to model the vehicles. However, with the support
of 5G technology, the network structure of the Internet of
Vehicles (IoV) becomes more heterogeneous and densely pop-
ulated, increasing the complexity and irregularity of network
topology. In this context, traditional modeling methods appear
too idealized and are difficult to adapt to the practical needs
of future IoV in terms of dynamics and density. Stochastic
geometry, as a mathematical tool for analyzing wireless net-
works and modeling, can be used to capture the spatial random
distribution of vehicles on the road as their density changes. To
better align with real-world scenarios, nodes can be abstracted
as corresponding spatial point processes. Compared to tradi-
tional geographic modeling methods, spatial point processes
are more suitable for illustrating the node distribution in self-
organizing vehicle networks, which is crucial for studying
vehicle selection methods in VANETs.

Second, for channel modeling between vehicles, it is nec-
essary to consider not only the channel conditions in real
urban environments but also the complexity that the model
brings to theoretical analysis. Therefore, we have studied
a channel model for vehicle-to-vehicle communication that
combines a large-scale path loss model and a small-scale
propagation model. Additionally, considering that the focus of
the paper is primarily on deriving the interference between
vehicles—interference that is mainly influenced by vehicle
distribution, power attenuation, and small-scale fading—we
simplify the model by neglecting other factors with lesser
impact, concentrating mainly on the power attenuation factor.
In future applications, we will explore how to more compre-
hensively incorporate other factors into the model to enhance
its accuracy and applicability.

Third, When analyzing the capacity of vehicular networks,
it is necessary to study the communication interruption prob-
ability between vehicles. However, in mathematical terms, the
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generalized integral for interruption probability does not yield
a closed-form solution. Therefore, we consider studying the
upper and lower bounds of the interruption probability. By
combining these with stochastic geometry tools, we derive
the network capacity, providing a foundation for subsequent
analysis.

The main contribution of the paper is to propose selecting
as many vehicles as possible to assist in positioning in the
5G ultra-dense vehicle network. The method is significant
effective in reducing GDOP and improving vehicle positioning
performance, and can give full play to the advantages of the
densification of the 5G ultra-dense network. The rest of this
paper is organized as follows: In Section II, we describe the
system model. Section III describes the proposed algorithm
in detail. Section IV describes simulation results and analysis.
Finally, Section V concludes this paper.

II. SYSTEM MODEL

In this section, to better present the algorithm, the system
model in this paper is as follows

Cooperating vehicles

Vehicles to be- 
positioned

Curve driving area

Traffic light- 
waiting area

Straight line-
driving area

Fig. 1. Typical mega-vehicle distribution scenarios in cities.

A. Scenario of Vehicles

This paper presents a study of vehicle positioning in urban
road networks, using four streets as an example. We establish
three distinct vehicle driving areas: straight-line driving, traffic
light waiting, and curved driving. As depicted in Fig. 1, the
traffic density is highest in the traffic light waiting area and
lowest in the curved driving area. Based on prior knowledge
of vehicle traffic volume, we assume three different density
distributions as λ = λ1, λ2, λ3. We assume that each vehicle
is equipped with distance measuring devices and can com-
municate wirelessly with other vehicles in the network. The
assisting vehicles in our study are referred to as cooperative
vehicles.

In our proposed approach, the vehicles in the city are
modeled as a dynamic Poisson Point Process(PPP), and the
angle θ between the vehicles to be positioned and the Coop-
erative vehicles is a random variable dependent on the vehicle
density λ, as detailed in Part III of this paper. The vehicles

to be positioned are located within a circle centered on the
cooperative vehicles, with a communication radius of R, as
illustrated in Figure 2.

R

Fig. 2. Diagram of the relative position of the cooperative vehicle and the
vehicle to be positioned

B. Internet of Vehicle Communication Channel Model

The wireless channel model forms the foundation of com-
munication system design and optimization, network deploy-
ment, and planning. The accurate modeling of the channel
through simulation and research is crucial for providing a
valuable basis for the deployment and implementation of
actual networks. This paper presents a channel model for V2V
communication, which combines a large-scale path loss model
with a small-scale propagation model. When considering only
large-scale fading, the signal energy of the transmitted signal
per unit energy is reduced to R−k after propagating a distance
R. By defining the small-scale power fading factor as H, the
channel fading model between vehicles can be expressed as
follows:

g(d) = HR−k (1)

where k is the path attenuation coefficient.
We define Hij as the power fading factor between the

cooperative vehicle and the vehicle to be positioned. The
cooperativeg vehicle and the vehicle to be positioned which
are currently communicating, are denoted as T0 and R0,
respectively. Except for the signal sent by R0, all signals
received from the cooperative vehicle at T0 are considered
as interference signals. Defining the transmitting power of the
cooperative vehicle as Pi, the total interfering signal power
received out at R0 can be expressed as

ΓN =
∑
i∈N

PiHTiRR
−k
TiR

(2)

We define θ as the minimum threshold to ensure normal
communication between vehicles, and the probability of inter-
ruption at R0 can be calculated from Equation (3) as follows:

I(λ) = P (SINR < θ) (3)

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2024.3493460

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 11,2024 at 05:37:14 UTC from IEEE Xplore.  Restrictions apply. 



4

Where SINR is expressed as

SINR =
PHT0RR

−k
T0R∑

i∈N

PiHTiRR
−k
TiR

(4)

Where P is the signal power of the cooperative vehicles
accessed to the positioning system in the current time slot.

Therefore, the mathematical expression of the disruption
probability ignoring the effect of thermal noise is

I(λ) = P ((SIR < θ)|Rg) (5)

where Rg is the distance and orientation between the vehicle
to be positioned and other cooperative vehicles at a certain
vehicle distribution density. From the outage probability I(λ),
we can obtain the communication capacity at T0 later.

III. VEHICLE SELECTION SCHEME FOR COOPERATIVE
VEHICLES IN VERY HIGH DENSITY OF VEHICLE SCENARIO

In this section, we employ stochastic geometry to model
the high-density distribution of vehicles and investigate the
selection scheme of cooperative vehicles based on the differ-
ence in vehicle distribution density in various scenarios. The
objective is to leverage the vehicle node selection scheme and
take advantage of the densification of the ultra-dense vehicle
network.

A. Stochastic Geometry Vehicle Modeling

We propose a novel approach based on stochastic geom-
etry to analyze vehicle selection in localization systems for
ultra-high-density vehicle populations. To capture the spatial
random distribution of vehicles in urban roads with density
variations, we use a stochastic geometric model and build
different vehicle distribution densities to analyze the system.
Our main idea is to represent the spatial locations of vehicles
in urban lanes as corresponding point processes. Among these
stochastic point processes, the most important and simple one
is the Homogeneous Poisson Point Process (HPPP).

In this paper, assuming that the distribution of K vehicles in
the entire vehicular network follows HPPP with parameter λ,
and the vehicles are mutually independent. The distribution
function

∏
(A) of the number of vehicles in any bounded

region A is as follows:

P (Π(A) = k) = exp(−λA)
(λA)

k

k!
(6)

where λA is Lebesgue Measure[28], and A is a bounded
region.

Later in this paper, we conduct multiple simulations of
the planar HPPP to evaluate the performance of the selection
scheme for cooperative vehicles. We analyze the statistical and
analytical results of these simulations, and the final results
represent the average performance that the selection scheme
should have in the entire planar network.

B. Vehicle Collaboration Strategy Based on Restricted Areas

In a 5G-based ultra-dense V2V self-organizing mobile net-
work, any vehicle can communicate wirelessly with any other
vehicle in the network. All vehicles initiate communication
with a certain probability in any time slot and communicate
on the same communication frequency band. However, at
high vehicle densities, communication between vehicles can
interfere with each other, which impacts system capacity. The
system capacity [30] is defined as the number of vehicles that
can successfully communicate in a unit area network under the
maximum interruption probability. To solve this problem, we
propose a region-restricted vehicle communication strategy.

Within a time slot, cooperative vehicles T initiate commu-
nication with the vehicle R to be positioned based on their
respective time slots. Only one vehicle communication pair
exists in this time slot, and communication initiated by other
vehicles will cause interference. The interference generated by
cooperative vehicles depends mainly on the distance from R;
cooperative vehicles closer to R will cause greater interference,
which will result in lower SINR at R. In this paper, we
introduce a restricted region at R, where vehicles within this
region stop transmitting data. However, setting the restricted
region too large reduces the density of cooperative vehicles at
the transmitting node, which lowers the number of cooperative
vehicles and increases the Geometric Dilution of Precision
(GDoP). Conversely, setting the restricted region too small will
cause excessive interference, which affects communication
between vehicles. Therefore, this paper proposes an optimal
restriction zone.

To obtain the optimal restricted area, it is necessary to
derive the system capacity, and the prerequisite for deriving
the system capacity is to calculate the interruption probability.
According to the model in Section II ,the expression for
interruption probability is:

I(λ) = P (
HT0RRT0R

−k

Σi∈NHTiRRTiR
−k

< θ) (7)

Where HTiR is the power fading coefficient between Ti and
R, RTiR is the distance between Ti and R, and k is the path
fading coefficient. When the SINR at the receiver R falls below
the threshold θ, the communication will be interrupted. And
then, we will transform equation (7) to obtain the following
formula

P (HT0R < θRT0R
−kΓN ) (8)

Where

ΓN = Σi∈NHTiRRTiR
−k (9)

Using the distribution function of the first part HTiR,
Equation (7) can be expressed as follows:

I(λ) = E

[∫ θR
TR
0 R−ΓN

0

µ exp(−µx)dx

]
= 1− E

[
exp

(
−µθR−k

T0R
ΓN

)]
= 1− LΓN

(
µθR−k

T0R

) (10)
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where LΓN
(•) is represents the Laplace transform of the

probability density function of the total interfering signal.
Additionally, as the radius of the restricted area region set
at R is d, Equation (10) can be expressed as follows:

I(λ) = 1− exp(−2πλ

∫ ∞

d

sx−k+1

sx−k + c
) (11)

Bringing equation (11) into equation (10) yields the expres-
sion as

I(λ) = 1− exp(−2πλ

∫ ∞

d

x−k+1

x−k + θ−1R−k
) (12)

As Equation (12) contains generalized integrals, it is not
feasible to perform calculations and obtain specific expres-
sions for the interruption probability. Therefore, we analyze
the upper and lower bounds of the interruption probability.
From Equation (12), we can derive the upper bound of the
interruption probability as follows:

I(λ) = 1− exp(−2πλ
∞∫
d

x−k+1

x−k+θ−1R−k )

≤ 1− exp(−2πλ
∞∫
0

x−k+1

x−k+θ−1R−k )

≤ 1− exp[− 2
kλπ

2R2θ
2
k csc( 2kπ)]

(13)

Next, to derive the lower bound for the interruption
probability, we resort to the concept of coverage prob-
ability. The expression for the coverage probability is
Cov(λ) = P (SINR > θ). Then, the interruption probability
can be written as

I(λ) = 1− P (SINR > θ)

= 1− P

(
HT0RR

−k
T0R∑

i∈N HTiRR
−k
TiR

> θ

)

> 1− P

(
HT0RR

−k
T0R

HTiRR
−k
TiR

> θ

)
= 1− P

(
d < RTiR |< θkHTiR

kHT0R
−kRT0R

)
(14)

As shown in Equation (14), the lower bound of the interrup-
tion probability represents the probability of any coordinated
vehicle falling into the main interference area. Thus, the
interruption probability can be expressed as follows:

I(λ) = 1− exp(−λS) (15)

where S represents the area of the main interference
area. Let HTiR

HT0R
= h and according to its Probability Density

Function(PDF) formula for the power attenuation factor, we
can be obtained the probability density function of h as
fH(h) = 1

(1+h)2
, and from equation (14) can be obtained

H > θ−1R−k
T0R

dk, then the expression of the area of the main
interference area S as

S =

∫ ∞

θ−1R−k
T0Rdk

1

(1 + h)
2

∫ h
1
k θ

1
k RT0R

d

2πxdxdh

= πθ
2
kR2

T0R[
1

k − 2
+ ln(

2

1 + d2R2
T0R

θ−
2
k

)]

(16)

So the expression for the lower bound of the corresponding
interruption probability as

I(λ) = 1−exp{−λπθ
2
kR2

T0R[
1

k − 2
+ln(

2

1 + d2R2
T0R

θ−
2
k

)]}

(17)
In summary, the upper and lower bounds of the interruption

probability show that the interruption probability increases
with the increase of the density of vehicles, i.e., the interfer-
ence between vehicles will be large in the ultra-dense vehicle
environment.

To solve this problem, the optimal restricted area radius
d is derived next, and solving for I(λ) = Pmax according to
equation (12), we can get

λT =
− ln(1− Pmax)

2π
∫∞
d

x−k+1

x−k+θ−1R−k
T0R

(18)

In the entire urban vehicular network, the distribution den-
sity of all vehicles is denoted as λ. At any given time slot, a
vehicle sends data with probability P. Therefore, the density
of cooperative vehicles is λP . Due to the existence of the
restricted area, the final density of cooperative vehicles can be
expressed as:

λT=λp exp(−λT pπd
2) (19)

let ∂λT

∂λ = 0 and solve it, and bring it into Eq. (19) to obtain
λT ≤ 1

πed2 , so that Eq. (18) equals 1
πed2 , and finally obtain

the optimal restricted area radius as

d =

√√√√ 2
kθ

2
kR2π csc

(
2
kπ
)

1− e ln(1− Pmax)
(20)

Based on the optimal restricted area radius obtained in
the previous section, this section proposes a method to solve
the selection of ultra-high density vehicles for cooperative
localization. Firstly, we define three different vehicle distri-
bution densities, denoted as λ = λ1, λ2, λ3, based on the a
prior information of three scenarios in the city. Accordingly,
the GDoP threshold g = g1, g2, g3, the maximum interruption
probability Pmax = P1, P2, P3, and the signal-to-noise ratio
threshold θ = θ1, θ2, θ3 are designed. In addition, due to the
ranging devices of the vehicles, each vehicle obtains the dis-
tance information R = R1, R2, ..., RN of all vehicles within
the communication range before communication is carried
out. Next, two thresholds, denoted as β = β1, β2, are set, and
based on the relationship between N and β, the corresponding
scenario is selected. Finally, by inputting Pmax, θ, R, we can
obtain d1, d2, ..., dN , and the number of vehicles within the
radius of d that are allowed to communicate with the vehicle
to be positioned is restricted. Assuming that the vehicle that
successfully communicates is denoted as S = S1, S2, ..., SM ,
the angle α = α1, α2, ..., αM from the communicating vehicle
to the vehicle to be positioned can be measured, and α is then
incorporated into equation (34) to calculate the GDoP of this
vehicle selection scheme until the GDoP threshold is satisfied.
The pseudocode of the algorithm is as follows:
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Algorithm 1 Vehicle selection algorithm.

1: for each vehicle nodes to be located do
2: Obtain the estimated distance to the surrounding

vehicle nodes R1, R2, ..., RN

3: If N is less than β1, determine the scene density as
λ1

4: else if N is greater than β1 and less than β2, determine
the scene density as λ2

5: else determine the scene density as λ3

6: Calculate N restricted areas:d =

√
2
k θ

2
k R2π csc( 2

kπ)
1−e ln(1−Pmax)

get d = d1, d2, ..., dN
7: Get the vehicle with successful communication

S1, S2, ..., SM

8: Measure the angle information with M vehicles
α1, α2, ..., αM

9: Bring into GDoP formula for calculation:√
Trace[

−
I
−1

(x)], get g
′

10: if g
′

does not meet the set threshold ,go to step 14
11: else go to step 1
12: end if
13: end if
14: Increase the GDoP threshold accordingly,go to step

1
15: end for

IV. SIMULATION AND ANALYSIS

In this section, we perform a series of numerical simulations
to demonstrate the effectiveness of the proposed vehicle selec-
tion scheme. In the first part, we adopt a logarithmic coordinate
system in order to see the results more intuitively. Firstly, we
perform a performance analysis of the relationship between
the upper and lower bounds of the disruption probability
and the vehicle density, and then we perform a performance
analysis of the relationship between the network capacity and
the maximum disruption probability with and without setting
the restricted area. Finally, we perform performance analysis
on the GDoP values of taking the number of fixed cooperative
vehicles versus the number of dynamic cooperative vehicles
under establishing different vehicle densities, respectively.

A. Simulation of Vehicle Communication Capacity Results
Based on Restricted Areas

The communication distance R is set to 100 m, the SINR
threshold θ is set to 3, and the path fading factor K is set
to 4. As shown in the figure 3, both the upper and lower
bounds of the probability of interruption increase with the
increase in the density of vehicles, illustrating that in the Ultra-
high density vehicles, interference between vehicle nodes will
seriously affect communication between vehicles.
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Fig. 3. Plot of interruption probability relative to co-vehicle density λ

In the following section, we analyze the effect of using
the restricted area communication method on the interrup-
tion probability and compare the relationship between the
network capacity and the interruption probability when using
the restricted area and when not using it. When the limit
of d approaches 0, the area of the restricted area in the
network is 0. By substituting d=0 into equation (12), we
obtain the expression for the interruption probability without
the restricted area as follows:

Id=0(λ) = 1− exp(−2

k
λθ

2
kR2π2 csc(

2

k
π)) (21)

Let Id=0(λ) = Pmax, we can obtain Tx of the cooperative
vehicle with the maximum interruption probability as

λ =
− ln(1− Pmax)

2
kθ

2
kR2π2

sin(
2

k
π) (22)

Then the expression of the network capacity without the
restricted area as

Cd=0 =
−(1− Pmax) ln(1− Pmax)

2
kθ

2
kR2π2

(sin
2

k
π) (23)

Remaining all other parameters unchanged, we calculate the
optimal restriction area d to be 36.827m using formula (20). As
shown in Figure 4, the network capacity with the presence of
the optimal restricted area is greatly improved compared to the
network capacity with the unrestricted area. A network com-
posed of vehicles with ultra-high density is an interference-
limited system, it is the overall interference intensity in the
network that determines the number of vehicles available for
collaboration in the network. After setting up restricted areas,
interference around the vehicles to be positioned is reduced.
Therefore, when considering the same maximum interruption
probability, the network can accommodate a higher density of
cooperative vehicles.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2024.3493460

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 11,2024 at 05:37:14 UTC from IEEE Xplore.  Restrictions apply. 



7

10-3 10-2 10-1 100

Maximum outage probability

0

0.5

1

1.5

2

Sy
ste
m

 c
ap

ac
ity

10-3

Network capacity with restricted areas
Network capacity without restricted areas

1.15 1.2 1.25 1.3 1.35
10-3

-2

0

2

10-7

Network capacity with restricted areas
Network capacity without restricted areas

Fig. 4. Plot of transmission capacity versus maximum outage probability
Pmax

B. Calculation and Simulation Analysis of GDOP with Vehi-
cles Density

The accuracy of the position depends on various factors,
with the most important being distance precision and geomet-
ric factors. Therefore, in the absence of precise planning of the
coverage area for cooperative vehicle positioning and quantity,
GDoP may become the main factor affecting location accuracy.
To analyze the variation of GDoP with urban vehicle density
in two-dimensional space, an analytical model of GDoP is
constructed in this paper. Moreover, the model was used
to analyze the positioning performance of dynamic vehicle
selection.

We set the coordinates of the vehicle to be precisely posi-
tioned to (x, y) , set the coordinates of all other vehicles used
for coordination to (xi, yi) , and set the measured distance d̂
between the vehicle to be positioned and the other vehicles,
denoted as

d̂ = [d̂1, d̂2, ..., d̂N ] (24)

For the vehicle to be positioned x, the conditional probabil-
ity density function of d̂ can be expressed as

P (
∧
d |x) =

N∏
i=1

1√
2πσ2

i

exp{− (
∧
di −di)

2

2σ2
} (25)

According to the conditional probability density function
provided in Equation (25), the Cramér-Rao Lower Bound
(CRLB) can be obtained based on the location estimate
mentioned above. Following Bayesian estimation theory, the
covariance of the estimation error for any unbiased parameter
estimate α̂i must be constrained by a CRLB(αi), which can
be expressed as:

cov(α̂i) ≥ CRLB(αi) (26)

CRLB(αi) = J(αi)
−1 (27)

where J(αi)
−1 denotes the Fisher Information Matrix

(FIM). And the localization accuracy information correspond-
ing to the Bayesian estimation of the vehicle x can be fully
inscribed by the FIM J(αi)

−1 of the full variable αi, whose
FIM is defined as

J(αi) = −Eαi,zi{∇αi,αi
T ln p(zi|αi)} (28)

where ∇αi,αi
T is the second order derivative with respect

to the full variable αi.
Based on the FIM defined above, let us calculate a lower

bound on the Clamerow conditional probability density of d̂.
The elements of this matrix are defined as follows:

[I(x)]ij = −E[
∂2lnP (d̂|x)
∂xi∂xj

] (29)

Bringing equation (25) into equation (29) yields the expres-
sion for the FIM as

I(x) =

 ∑N
i=1

(x−xi)
2

σ2d2
i

∑N
i=1

(x−xi)(y−yi)
σ2d2

i∑N
i=1

(x−xi)(y−yi)
σ2d2

i

∑N
i=1

(y−yi)
2

σ2d2
i


=

[ ∑N
i=1

cos2(αi)
σ2

∑N
i=1

cos(αi) sin(αi)
σ2∑N

i=1
cos(αi) sin(αi)

σ2

∑N
i=1

sin2(αi)
σ2

]
(30)

α denotes the angle from the co-vehicle to the vehicle to
be positioned, then the CRLB can be given by I−1(x). Based
on the positioning for any estimate

∧
x of the vehicle position

obtained using the unbiased estimator are

Ex[(
∧
x−x)(

∧
x−x)T ] ≥ I−1(x) (31)

Since in this paper we mainly analyze the performance of
CRLB for different vehicle selection schemes, the common
factor σ2 in equation (30) is extracted and simplified as

I = σ2I (32)

Where I can be expressed as

−
I (x) =

[ ∑N
i=1 cos

2(αi)
∑N

i=1 cos(αi) sin(αi)∑N
i=1 cos(αi) sin(αi)

∑N
i=1 sin

2(αi)

]
(33)

Based on the above theory, we can conclude that
in the scenario of a network of ultra-dense vehicles,
α = {α1, α2, ..., αN} is sufficiently necessary for analyz-
ing the localization performance, which will affect the
CRLB of localization accuracy. The set of parameters
α = {α1, α2, ..., αN} varies depending on the different op-
tions of synergistic vehicles. Thus, different schemes for
selecting vehicles will have a direct impact on the Cramér-
Rao lower bound (CRLB) of localization accuracy.

It is further simplified into GDOP according to Eqs. (27),
(28) and (29) as

GDOP =
√

Trace[(I−1(x)] (34)

GDOP =
√
CRLB (35)

GDOP =

√
Trace[(I

−1
(x)] (36)

To summarize, when selecting vehicles for cooperative posi-
tioning, the difference in optimal positioning performance of
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different vehicle selection schemes can be fully represented
by the GDoP, regardless of whether the current distribution
density of corresponding vehicles is the same.

The use of a restricted area vehicle communication strat-
egy can significantly increase the number of vehicles in the
network. Therefore, it is necessary to study the performance
of cooperative localization schemes at different densities in
the presence of ultra-high density vehicles. In traditional
cooperative vehicle localization, a fixed number of vehicles
are selected in a certain geometric pattern to collaborate with
the vehicles to be positioned. In an ultra-high density vehicle
network, if the number of selected collaborating vehicles is
fixed according to the PPP, only the distance between the
vehicle to be positioned and the cooperative vehicle needs to
satisfy a certain probability distribution. The angle θ between
the vehicle to be positioned and the cooperative vehicle is a
random variable independent of density, and the cooperative
vehicles are distributed in a circular pattern around the vehicle
to be positioned.

Then in terms of the average GDoP, for fixed scenarios the
expression exists as

Eθ{Tr(
−
I −1)|λ} = Eθ{Tr(

−
I −1)} (37)

Equation (37) is validated below by simulating an ultra-
high density vehicle network using a HPPP. For example,
considering a vehicle to be positioned at the origin, the
performance of the selection scheme in the entire network is
obtained by analyzing the variability of different cooperative
selection schemes at that vehicle. Monte Carlo experiments are
used to average the results for each scheme at each distribution
density. To reduce computational complexity, a scenario with
four lanes in a 160 m × 25 m urban area is selected, with
an initial vehicle distribution density of 40/(4000m2). The
data has been subjected to corresponding fitting processing
for easy visualization. Figure 6 shows that the fitted line
segments are close to straight lines for different values of N.
The correlation fitting coefficients for N = 4 and N = 7
are RN=4 = −0.0685 and RN=7 = −0.0605, respectively,
and the corresponding P values are PN=4 = 0.3864 and
PN=7 = 0.3878, respectively. The simulation results fully
support the assertion of Eq.(35), which states that the GDoP is
completely independent of the density of cooperative vehicles
for a fixed number of vehicles scenario. Therefore, the lower
limit of the localization accuracy of Cramerow will no longer
change, and further densification of the vehicle network will
not provide additional benefits.

In addition, it can be observed from Figure 5 that the aver-
age GDoP decreases as the number of participating vehicles in-
creases in the ultra-high density vehicle network. This implies
that the localization accuracy can be effectively enhanced with
an increase in the number of participating vehicles. This paper
proposes a vehicle selection scheme for cooperative vehicle
positioning in different urban scenarios, based on setting
different GDoP thresholds according to varying distribution
densities in the case of ultra-high density vehicles. The scheme
selects cooperative vehicles by continuously introducing the
number of vehicles successfully communicating in the system
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100 120

Fig. 5. Plot of simulation data of GDoP versus distribution density λ.

until the GDoP thresholds are met, as illustrated below. Figure
6 demonstrates the use of PPP to simulate vehicle distribution
and provides the variation of GDoP for the scheme as the
vehicle distribution density changes. The average GDoP at
each density is obtained by taking the mean value of 500
Monte Carlo experiments. The correlation coefficient in Figure
6 is R=-0.59, with a P-value of 4.7× 10−5. Compared with
Figure 5, the dynamic selection of cooperative vehicles for
positioning can effectively improve GDoP, which indicates that
the traditional selection of fixed vehicles for positioning does
not fully utilize the advantages of dense networks. The optimal
localization performance of the proposed scheme significantly
benefits from the continuous densification of the ultra-high
density vehicle network, unlike conventional schemes. The
proposed scheme selects more vehicles when the vehicle
density increases, and the relationship between GDoP and
vehicle density is typically negative at this time. Therefore,
the proposed scheme can effectively improve the CRLB of
localization accuracy.

C. Simulation Analysis of Positioning Performance with Vehi-
cle Density

To further illustrate the superiority of the localization perfor-
mance of this algorithm in the 5G ultra-dense vehicle network,
we experimentally analyze the localization error of the vehicles
to be positioned for the selected fixed number of cooperative
vehicles and the dynamic number of cooperative vehicles,
respectively. Experimental results are shown in Figures 7 and
8. In Figure 8, the P-value of the fitted curve is 2.6× 10−60,
and the correlation coefficient is R=-0.9133. Figure 7 further
confirms the findings of Figure 5, as vehicle density increases
and a fixed number of cooperative vehicles are selected for
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Fig. 6. Plot of GDoP versus distribution density λ under dynamic nodes
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auxiliary positioning, the positioning accuracy of vehicles to
be positioned does not improve, and the localization RMSE
values remain unchanged. However, Figure 8 illustrates the
results of dynamic selection of cooperative vehicles for posi-
tioning, indicating that the positioning accuracy of the vehicles
to be positioned significantly improves with increasing vehicle
density. Therefore, the best performance of localization is
independent of the vehicle distribution density when a fixed
number of cooperative vehicles are selected, and does not
benefit from further densification of the vehicle network.
On the other hand, when dynamically selecting cooperative
vehicles, the localization RMSE value of the vehicles to be
positioned decreases, indicating that selecting more vehicles
for collaboration is necessary when the density of cooperative
vehicles increases.

In summary, the proposed vehicle selection scheme is better
suited for 5G ultra-dense vehicle networks than traditional
methods, and has the potential to further improve localization
performance as the vehicle communication network densifies
in the future.
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Fig. 7. Positioning performance of vehicles under different cooperative
vehicles
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Fig. 8. Relationship between vehicle positioning performance and cooperative
vehicle density

D. The existing algorithms comparison

We compare the proposed scheme with the method by
Mukhopadhyay[27]. In order to adapt their technique to the
problem consider in this work, we considered their second
network protocol, placing their anchor nodes at random posi-
tions. We allowed all nodes in the network to move randomly,
assuming that the positions of anchor nodes are known and

setting all target nodes to have the same ranging range. In the
digital simulation, we configured a constrained interference
function that impacts the network capacity in a mobile ad-
hoc network. We simulated both algorithms in this specific
environment, and the simulation results are presented in Figure
9.

Fig. 9. Relationship between vehicle positioning performance and cooperative
vehicle density

As shown in Figure 9, we compared GDoP without interfer-
ence, our algorithm under interference, and the DLOC-GDoP
algorithm. In the presence of communication interference
between vehicles, the DLOC-GDoP algorithm is significantly
constrained as vehicle density increases.

V. CONCLUSION

In this paper, we propose a cooperative vehicle selection
algorithm based on stochastic geometry and restricted areas
for ultra-high density vehicle networks. The ultra-high density
vehicles in the city are modeled using a stochastic geometry
approach, and the theory is analyzed using related tools. The
proposed algorithm selects vehicles based on the restricted
area to reduce interference between vehicles in the distribution
of ultra-dense vehicles in the city, aiming to increase the
network capacity of the entire vehicle network and improve
the distribution density of cooperative vehicles in ultra-high
density vehicle networks. We set different GDoP thresh-
olds for a priori information of vehicle volume distribution
density in three scenarios in the city and adaptively select
cooperative vehicles according to the thresholds. Simulation
results demonstrate that the algorithm can improve the network
capacity by 71% at high vehicle distribution density and fully
leverage the 5G ultra-dense vehicle network densification to
enhance vehicle localization performance.

APPENDIX

Derivation of L(•)
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Let us review formula (10), in which we will use stochastic
geometry tools to compute the Laplace transform.

I(λ) = E[
∫ θR−k

T0RΓN

0 µ exp(−µx)dx]

= 1− E[exp(−µθR−k
T0R

ΓN )]

= 1− LΓN
(µθR−k

T0R
)

(38)

where L• is the Laplace transform of the probability density
function of the total interference signal

LΓN
(µθR−k

T0R
)= exp(−2πλ

∫∞
d

sx−k+1

sx−k+c
) (39)

where s = µθR−k
T0R

When the network coverage is a circular area with the
vehicle to be positioned as the center of the circle and the
distance from the center of the circle is greater than d and less
than r, the derivation for LΓN

(µθR−k
T0R

) is derived as follows

LΓN |N (µθR−k
T0R

)=E

[
exp(−µθR−k

T0R

N∑
i=1

HT0RR
−k
TiR

)

]
=

N∏
i=1

E

[
exp(µθR−k

T0R

N∑
i=1

HT0RR
−k
TiR

)

]
=
{
E[exp(−µθR−k

T0R
HT0RR

−k
TiR

))]
}N

(40)
Since the vehicles are geometrically randomly distributed,

the probability density function of the distance between any
cooperative vehicle and the vehicle to be positioned is

fRTiR
(x) =

2x

r2 − d2
(41)

LΓN |N (µθR−k
T0R

)=
{
E[exp(−µθR−k

T0R
HT0Rx

−k))]
}N

=

{
r∫
d

2x
r2−d2 [exp(−µθR−k

T0R

N∑
i=1

HTiRx
−k)]dx

}N

(42)
Bringing equation (39) to equation (38) yields the expres-

sion

LΓN |N (µθR−k
T0R

)=
{
E[exp(−µθR−k

T0R
HT0Rx

−k)]
}N

=

{[
r∫
d

2x
r2−d2

[
exp(−µθR−k

T0R

N∑
i=1

HTiRx
−k)

]}N (43)

Using equations (18) and (37), we can obtain LΓN
(µθR−k

T0R
)

as

LΓN
(µθR−k

T0R
)

=
∞∑

N=1

(πr2λ)
N

N ! exp(−πr2λ)

×
{

1
π(r2−d2)

r∫
d

2πE
[
exp(−µθR−k

T0R
HT0Rx

−k
]
xdx

}N

= exp(
[
−πr2λ

]
)

∞∑
N=1

λN

N !
(r2)

N

(r2−d2)N

×
(

r∫
d

2πE
[
exp(−µθR−k

T0R
HT0Rx

−k)
]
xdx

)N

= exp
{[

−πr2λ
]
+

r2λ
r2−d2

r∫
d

2πE
[
exp(−µθR−k

T0R
HT0Rx

−k)
]
xdx

}
= exp

{
r2λ

r2−d2 2π
r∫
d

x
{
E
[
exp(−µθR−k

T0R
HT0Rx

−k)
]
− 1
}
dx

}
(44)

When A → ∞

LΓN
(µθR−k

T0R
) =

exp

{
2πλ

∞∫
d

x
{
E
[
exp(−µθR−k

T0R
HT0Rx

−k)
]
− 1
}
dx

}
(45)

Because fH(h) = µ exp(−µh)

E
[
exp(−µθR−k

T0R
HT0Rx

−k)
]

=
∞∫
0

µ exp(−µh) exp(−µθR−k
T0R

HT0Rhx
−k)dh

= µ

µθR−k
T0Rx−k+µ

= µ
sx−k+µ

(46)

Substituting equation (44) into (43) yields the expression

LΓN
(s) = exp

−2πλ

∞∫
d

sx−k+1

sx−k+1 + µ

 (47)
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