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ABSTRACT

MEC is set to play a pivotal role in 6G, support-
ing the Internet of Everything. 3GPP has proposed
user mobility analysis and prediction methods to
manage vast user data. However, by bringing ser-
vices closer to the network edge, MEC improves
user access efficiency and exposes user predic-
tions, including location data, to greater privacy
risks and potential malicious attacks. Additionally,
conducting experiments on large-scale user pop-
ulations increases communication and training
costs. To address these challenges, we propose
the Digital-Twin-Enabled Privacy-Preserving Fed-
erated User Prediction Framework (6G-DTFP) for
6G MEC. This architecture incorporates a person-
alized model, enhances training efficiency, and
strengthens privacy protection using differential
privacy mechanisms. By leveraging Digital Twin
technology, it maps real user entities to the virtual
environment, improving insights into user charac-
teristics and optimizing resource utilization. Exper-
imental results show that this framework offers
reliable user prediction and aligns with the sustain-
able development goals of 6G networks.

INTRODUCTION

With the advancement of research into sixth-gen-
eration (6G) mobile communication networks,
the integration of Mobile Edge Computing (MEC)
technology is increasingly recognized as crucial
for 6G [1]. 6G maintains the cloud-edge-termi-
nal collaborative architecture of 5G. However,
6G offers greater capacity, higher data rates,
and lower latency [2]. It enhances connectivity
among intelligent entities [3]. This creates a het-
erogeneous user dataset and introduces inter-net-
work challenges, increasing response times and
costs [4]. The 3rd Generation Partnership Proj-
ect (3GPP) advocates introducing user predic-
tion mechanisms to address efficiency and cost
challenges [5]. TR 23.700-80 highlights that the
requirements for user mobility prediction of the
core network mainly focus on assisting the Appli-
cation Function (AF) in selecting User Equipment
(UE). TR 23.700-84 emphasizes that analyzing
user mobility via Network Data Analytics Function
(NWDAF) can capture UE location characteristics,
helping optimize Quality of Service (QoS) strate-

gies. These requirements are addressed in the UE
mobility analytics of TS 23.288, which defines the
format of mobility prediction outputs, including
UE ID, time slot entry, duration, and other details.

In 3GPP standards, the RAN-Based Notification
Area (RNA) user prediction mechanism reduces sig-
naling overhead by configuring a set of Cells or TAs,
allowing the UE to move within this area without fre-
quent location updates. CellHevel prediction leads to
excessive signaling in high-mobility scenarios, while
TA-level prediction lacks accuracy for 6G services.
We propose a compromise using gNodeB-level
mobility analysis to balance positioning accuracy
and signaling overhead, independent of the UE
RRC connection state. Before user prediction, con-
nection records between devices and gNodeB are
collected and converted into sequential patterns
to set initial conditions. This solution is a core net-
work-layer prediction, while RNA is a passive opti-
mization mechanism in the access network. The two
mechanisms can complement each other through
cross-layer interaction and do not serve as substi-
tutes. To balance computation and transmission
delays, user prediction is migrated from network
nodes to MEC nodes, and multiple MEC nodes
are adopted to enhance autonomy and improve
the model efficiency. With massive heterogeneous
data, MEC edge servers experience increased load,
but gNodeB-level user prediction helps guide MEC
operational decisions, distributing load pressure. This
approach avoids traditional traversal mechanisms,
offering efficient solutions for paging and improving
network performance and service quality [6].

While efficient user prediction is critical,
addressing the privacy exposure and security
risks associated with aggregating user location
information is equally important. The International
Telecommunication Union’s Radiocommunication
Sector (ITU-R) underscores security, privacy, and
resilience as fundamental principles in the design
of 6G, prioritizing user safety [7]. In this context,
Federated Learning (FL) [8] protects privacy by
decentralizing model training and computation,
making it ideal for MEC User Prediction. Local
models are trained on clients, and their updates
are aggregated into the global model, allowing
for knowledge sharing across clients while ensur-
ing privacy by avoiding raw data exchange. In
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FIGURE 1. Benefits of Integrating MEC, FL, and OT.

the 11D Scenario, the global model replaces local
models for testing, leveraging shared knowledge
for higher accuracy. FL enhances scalability and
efficiency by allowing local learning and exchang-
ing only model updates, making it well-suited for
the dynamic 6G network environment. Further-
more, deploying computing resources close to
FL clients within MEC environments significantly
reduces communication delays traditionally asso-
ciated with FL, facilitating large-scale learning in
6G networks. However, existing FL algorithms
face challenges in managing diverse and hetero-
geneous datasets [9] in 6G edge network, where
clients have distinct data distributions. Direct
deployment of the global model leads to slower
accuracy improvements and may not fully align
with the current 6G MEC architecture. Therefore,
a secure and efficient federated learning frame-
work is urgently needed to develop one specifi-
cally designed to accommodate the diverse and
heterogeneous user data of 6G MEC User Predic-
tion. Such a framework would enable local clients
to access global model knowledge without neces-
sitating model transmission, effectively addressing
the security concerns associated with model prop-
agation in traditional FL approaches.

Given the increased scenario diversity and
component heterogeneity in 6G networks, MEC
User Prediction and FL interactions lead to sig-
nificantly heightened communication and training
costs. Digital Twin (DT)[10] technology provides
a means to create virtual models that mirror the
real world through data interactions, enabling the
simulation and prediction of the 6G MEC network
environment. DT facilitates realtime monitoring of
the 6G network and leverages robust communica-
tion and computational capabilities to minimize
resource expenditure while promoting energy effi-
ciency and emission reduction[11]. However, the
application of DT within MEC User Prediction for
6G networks remains in its nascent stages, primar-
ily due to challenges related to trust and privacy
concerns associated with the sharing of sensitive
user location information. To address these chal-
lenges, integrating FL with DT technology offers a
promising strategy for mitigating privacy risks and
communication costs.

Despite the benefits of integrating MEC, FL,
and DT technologies, the industry currently lacks
practical and effective user prediction mech-
anisms for 6G MEC. These mechanisms should
combine the three technologies and be com-
patible with the distributed architecture of 6G.
Additionally, they must address diverse, hetero-

geneous, and privacy protection requirements for
user prediction. This article proposes a practical
Digital Twin-Enabled Privacy-Preserving Federated
6G MEC User Prediction Framework (6G-DTFP).
The architecture uses DT to map the real world
into a virtual space. This allows real user features
to be integrated into the MEC network, effectively
linking users with the MEC system. The 6G Fed-
erated User Prediction captures user data from
the real world. It enables local prediction tasks
as needed. Results are then sent to the service
layer to meet user needs. This improves training
efficiency and service quality.

To handle data heterogeneity among clients,
the framework aggregates each client model.
Differential Privacy (DP) [12] techniques are
employed further to secure the models during the
upload and download processes.

6G-DTFP is expected to bring numerous bene-
fits to the intelligent world, as shown in Fig. 1. The
main contributions of this article are summarized
as follows:

+ We propose a novel 6G Digital Twin Feder-
ated User Prediction Framework (6G-DTFP)
that integrates Digital Twin technology with
Federated Learning to achieve efficient and
privacy-preserving user prediction.

+ Our framework uniquely combines Digital Twin
for realtime network simulation with Federat-
ed Learning for decentralized model training,
effectively addressing the challenges of data
heterogeneity and privacy in 6G networks.

+ We enhance Federated Learning by incorpo-
rating differential privacy techniques, ensur-
ing the secure aggregation of global models
while allowing local retention of personalized
models. This approach mitigates privacy risks
and improves security in 6G MEC scenarios.

KEY DESIGN REQUIREMENTS

In November 2023, Purdue University, in collabora-
tion with Ericsson, Intel, Nokia, Qualcomm, Cisco,
and Dell, released the 6G Global Roadmap: A Tax-
onomy [13], which highlights four critical issues in
the development of 6G: scalability, sustainability,
trustworthiness, and digital inclusivity. Among these
critical challenges, we focus on scalability and sus-
tainability, proposing a systematic 6G-DTFP (Dis-
tributed, Flexible, Trustworthy, and Personalized)
framework. The key design requirements that this
framework needs to meet are as follows:
Scalability: With 6G expected to support 125
billion devices by 2030[14], handling vast and
diverse data is crucial. This progression drives the

Direct deployment of the
global model leads to slower

accuracy improvements and

may not fully align with the
current 66 MEC architecture.
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transformation of 6G from a core communication
technology to a foundational infrastructure for
digital ecosystems. However, the devices’ diver-
sity and massive data heterogeneity present sig-
nificant challenges for 6G. In the next section,
we propose a Privacy-Preserving Federated User
Prediction Framework to meet this requirement.
This framework integrates FL with MEC, efficient-
ly handling the heterogeneous data from clients
while supporting devices’ dynamic joining and
departure, ensuring excellent scalability. Addition-
ally, incorporating DP effectively reduces the risk
of attackers inferring user information, fully meet-
ing the requirements for trustworthiness.
Sustainability: Climate change is one of human-
ity’s major challenges, with electricity consump-
tion being a significant source of greenhouse gas
emissions. Additionally, the scarcity of critical met-
als limits hardware manufacturing. Relying solely
on hardware innovation will not meet the future
demands of 6G networks [15]. Thus, the new 6G
framework must address sustainability require-
ments. We propose a Digital Twin-Enhanced Fed-
erated User Prediction Framework (6G-DTFP) to
meet this requirement. It builds Al models for user
prediction and integrates DT to optimize resource
utilization and achieve sustainability goals.

PRIVACY-PRESERVING FEDERATED USER PREDICTION
FRAMEWORK

To meet the design requirements for scalability,
as stated earlier, we propose a privacy-preserving
personalized Federated User Prediction mecha-
nism for 6G MEC, as illustrated in Fig. 2.

First, Fig. 2a presents the Trs-PRE architec-
ture, an improved transformer model for user

prediction in 6G edge networks. We extracted
sequential data x € R3*X from telecom network
user data, where X is the sequence length. Then,
the input sequence data x € R3*X is divided into
three independent sequences x) € R3*X, j =1, 2,
3, based on start time, gNodeB longitude, and lat-
itude. This division helps mitigate overfitting. Each
sequence is processed through a patch-based
Transformer backbone during forward propa-
gation, ensuring that the output from the Linear
layers remains independent, thereby enhancing
prediction accuracy. During this process, we use
the Mean Squared Error (MSE) loss between the
predicted values ) and the actual values y to
guide the Trs-PRE model training. Finally, we input
the predicted and actual values into a 2D KD-tree
for the nearest neighbor search. If the nearest
neighbor returned is the same, the prediction is
considered correct. Otherwise, it is deemed incor-
rect. The total accuracy is calculated based on this
principle, determined by dividing the number of
correct predictions by the total number of instanc-
es in the dataset. Trs-PRE demonstrates substantial
data collection and analysis capabilities, allowing
it to accurately predict user locations even with
an expanding user base, thus ensuring scalability.
Given the large and diverse user population in 6G
scenarios, centralized data processing can con-
sume significant resources. It may not fully exploit
the advantages of various data types, potentially
leading to privacy breaches. Therefore, there is a
pressing need for a highly trustworthy and adapt-
able 6G MEC user prediction mechanism.

Figure 2b illustrates the federated user predic-
tion mechanism within the 6G MEC framework to
integrate MEC and FL technologies. We deploy
the 6G-DTFP within the 6G Core Network, where
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the Cloud Layer services are implemented on the
Central NWDAF, the Edge Layer services oper-
ate on the Edge NWDAF, and each Data Layer
component is deployed within the Local AMF. By
leveraging MEC technology, computational and
storage resources are shifted from the centralized
cloud to the network edge, enabling function off-
loading, improving response times, and optimiz-
ing resource utilization. The Cloud Layer provides
large-scale storage and computing in this frame-
work, efficiently processing information from the
Edge Layer while managing network resources.
This ensures effective resource allocation and
load balancing between edge nodes and terminal
devices within the 6G network. The Edge Layer
includes edge servers, geodes, and data centers
that process requests from terminal devices in the
data layer to optimize resource use. Edge servers
aggregate local model parameters from terminal
devices, forming a global model for collabora-
tive training without revealing private data, thus
enhancing privacy protection. The data layer plays
a critical role by performing local data processing
and modeling, improving computational efficien-
cy, and reducing bandwidth reliance.

Finally, to create a trustworthy and sustain-
able federated user prediction mechanism within
6G MEC, we develop a personalized federated
algorithm to tackle the heterogeneity of terminal
data, as shown in Fig. 2c. Each client is assigned a
local model w and a personalized model v in this
mechanism. Both models, w and v, deployed the
Trs-PRE model and are trained on the same data,
which is the privacy data for their client. The core
distinctions manifest in their loss function designs
and parameter transmission mechanisms. For the
local model w, in each communication round,
w is initialized with the global model W from the
edge server. Then, it is trained on the local data-
set using MSE as the loss function, with updated
parameters uploaded to the edge server for global
model W aggregation and distribution, facilitating
cross-client knowledge sharing. For the person-
alized model v, during communication rounds,
v remains stored locally without being transmit-
ted to the edge server and is not overwritten by
the global model. It is updated using a composite
loss function with MSE and a regularization term.
Minimizing the parameter distance between the
global model W and the personalized model v
enhances prediction accuracy for user behavior.
We retain local and global knowledge through
the collaboration of three models.

Despite the high security of the personalized
model v, which does not require transmission,
local models w involved in aggregation still need
to be transmitted. In the real 6G environment, this
process could be susceptible to member infer-
ence attacks, model inversion attacks, and other
threats. Such attacks may analyze model param-
eters or gradients to infer user information and
reconstruct training data, potentially leading to
privacy breaches. Therefore, we follow the pri-
vacy-performance-cost triangular balance princi-
ple when constructing model w and model v. By
incorporating differential privacy during the model
upload and distribution process, we apply Gauss-
ian mechanisms to perturb the actual parameters
of the model, obfuscating the specific details of
the original parameters to ensure more secure

transmission of model w and global model W. To
calibrate the noise magnitude, we rigorously eval-
uate its impact on accuracy and communication
rounds, achieving an optimal equilibrium among
efficiency, security, and energy-saving.

THE PRoPOSED 6G-DTFP

To meet design requirements for sustainability, we
propose a Digital Twin-Enhanced Federated User
Prediction Framework (6G-DTFP), as illustrated
in Fig. 3. By leveraging the capabilities of digital
twins, this framework enhances awareness of net-
work conditions and effectively reduces environ-
mental simulation costs associated with a large
user base. This integration strengthens the feder-
ated user prediction mechanism and promotes
sustainability and digital inclusivity through opti-
mized resource allocation and equitable access to
network services.

The 6G-DTFP framework designed in this arti-
cle comprises three layers: the Physical Layer, the
Digital Layer, and the Service Layer.

PHYSICAL LAYER

In the 6G-DTFP framework, the physical layer
collects diversified and heterogeneous data from
user terminals, serving as the most direct inter-
face for real-world environmental interaction. In
this layer, physical entities in the real world (e.g.,
base stations and servers) are mapped into dig-
ital models while aggregating data D; from user
devices, where j represents the total number of
users. Given our focus on predicting users’ future
gNodeB access patterns, the digital twin of user
uj is denoted as DT, which is composed of the
collected data D; and real-time dynamic state R;.
The feedback mechanism incorporates Data Flow
and Information Feedback, ensuring bidirection-
al information exchange between the Physical
and Digital Layers. In the Data Flow phase, the
Physical Layer transmits all digital twins DT; con-
taining user data to the Digital Layer, where sub-
sequent computational tasks are executed. The
virtual mapping construction and the Data Flow
component enable efficient data processing with
minimized resource consumption. Leveraging DT,
we eliminate the need for resource-heavy physical
experiments by creating accurate virtual replicas
for predictive modeling and scenario simulation,
thus enabling more energy-efficient infrastructure
optimization in the 6G network.

DIGITAL LAYER

The Digital Layer is res ponsible for structuring the
data transmitted from the physical layer, parsing
it into data-label pairs. We implement sequence
length normalization to ensure that data of vary-
ing scales are suitable for model construction and
real-time analysis. However, directly synchronizing
raw data to the digital twin system would intro-
duce significant communication load and data
leakage risks. To address this issue, we designed
a Privacy-Preserving Federated User Prediction
Framework (6G-PFUP) within the 6G MEC sce-
narios. Under the 6G-PFUP, local models are
continuously trained in a digital twin environ-
ment while maintaining privacy, simulating the
likelihood of users connecting to gNodeBs at the
next moment. Each client obtains a personalized
model v retained locally to mitigate privacy risks.

In the 66-DTFP framework,
the physical layer collects
diversified and hetero-
geneous data from user

terminals, serving as the

most direct interface for
real-world environmental
interaction.
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The framework improves user
prediction capabilities, which
is expected to promote the
development of intelligent

services and support dynam-
ic network optimization.
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FIGURE 3. The architecture of 66-DTFP.

This model incorporates local knowledge and inte-
grates global insights from other clients, achieving
high-precision user prediction services. Notably,
the Information Feedback in the Digital Layer is a
crucial component of the feedback mechanism.
Specifically, the system records the gNodeB infor-
mation currently connected by user ujas R In
the Information Feedback phase, R; is returned
and combined with D; to update the sequence
state. This mechanism enables real-time feedback,
continuously optimizing the prediction model by
comparing the actual connected gNodeB with
the system prediction results. Based on 6G-DTFP,
we can obtain real-time status information about
the gNodeB the user is connected to and make
optimization decisions accordingly, significantly
improving the performance of downstream ser-
vices such as paging.

SERVICE LAYER

The Service Layer provides interfaces, user inter-
actions, and intelligent services. It offers personal-
ized, ready-to-use models for each client, facilitating
interactions between users and administrators while
delivering innovative services. This article integrates
the user-prediction-centric 6G-PFUP framework
within the 6G-DTFP for accurate forecasting of user
location. Notably, the 6G-DTFP can transform into
a versatile, digital-twin-enhanced federated architec-
ture that adapts to various scenarios, including smart
cities, transportation, healthcare, and satellite com-
munications. It supports prediction, analysis, diagno-
sis, and simulation, optimizing the 6G network and
advancing intelligent services, thus contributing to
digital transformation and sustainable development.
The 6G-DTFP framework offers an innovative
solution for the complex application scenarios
of 6G networks by integrating digital twin tech-

nology with federated learning mechanisms. Its
multi-layered design enables real-time monitoring
and optimization of network resources, enhances
user experience, and safeguards user privacy. The
framework improves user prediction capabilities,
which is expected to promote the development of
intelligent services and support dynamic network
optimization. We hope this architecture can con-
tribute to sustainable development in the future.

NUMERICAL RESULTS

First, we utilize a comprehensive Shanghai Tele-
com dataset comprising over 7.2 million user pag-
ing access records. This dataset covers six months
and documents interactions with 3,233 gNodeB
instances across 9,481 mobile devices. Specifi-
cally, it includes the month, date, start time, end
time, gNodeB longitude, gNodeB latitude, and
user ID. To simulate real-world data distribution,
we construct the Non-lID dataset by Dirichlet Dis-
tribution and allocate 150 clients to edge servers,
with the number of users in each client ranging
from 2815 to 4508. Utilizing this dataset, we
conduct experiments to rigorously evaluate the
proposed framework’s efficacy and assess the per-
sonalized model’s performance v.

Figure 4 evaluates the performance of Trs-PRE,
showing the test accuracy changes of the Trs-
PRE model compared to other predictive models
(including LSTM_FCN, FCN, LSTM, ResCNN, and
TST) on the test set. As communication rounds
increase, Trs-PRE exhibits lower volatility and out-
performs other models. In the 41st round, Trs-
PRE achieved an accuracy of 60.40 percent,
surpassing LSTM_FCN, FCN, LSTM, ResCNN,
and TST by 2.18 percent, 2.03 percent, 2.04 per-
cent, 3.39 percent, and 2.04 percent in accuracy.
This performance is attributed to Trs-PRE’s Trans-
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former-based architecture, which effectively cap-
tures long-range dependencies in time series and
employs the channel independence mechanism.
Additionally, compared to TST, the patching oper-
ation used in Trs-PRE improves the efficiency of
attention calculations. As a result, Trs-PRE demon-
strates faster convergence and superior accuracy.

Figure 5 illustrates a comparative analysis of
6G-DTFP and the only local method (without
employing FL or MEC) regarding test accuracy
on the test set. The 6G-DTFP framework demon-
strates a rapid increase in accuracy during the
early communication rounds, maintaining a high
level of performance thereafter, achieving an
accuracy of 62.42 percent by the 79th round.
In contrast, the Local model exhibits consider-
able fluctuations in testing accuracy, consistently
remaining below 62 percent, with certain rounds
even dipping to 60 percent.

This phenomenon primarily stems from data
distribution bias caused by individual client users’
behavioral patterns and environmental states. In
such cases, pure local training tends to cause over-
fitting. Furthermore, when the number of users
with small-sample clients is insufficient, low-accu-
racy clients are likely to occur, adversely impact-
ing all clients” overall performance and resulting
in significant performance fluctuations. The good
performance of 6G-DTFP can be attributed to the
constraints of the optimization objective and the
knowledge transfer capability inherent in FL. Since
the global model aggregates the parameters of all
local models, the overall optimization objective is
constrained by both the aggregation strategy and
the local model optimization goals. This facilitates
the global model in implicitly extracting com-
mon patterns from the data of individual client
users through weighted aggregation. Additionally,
knowledge transfer is realized through aggregat-
ing parameter spaces, endowing the global model
with global knowledge, and compensating for the
knowledge that individual clients may not have
learned but that exists in practice.

The analysis reveals that 6G-DTFP not only
outperforms the local training results in terms of
accuracy but also demonstrates superior conver-
gence properties, indicating a tendency toward
stability over prolonged training periods. Com-
pared to purely local approaches, this framework
offers enhanced efficiency. These findings validate
the effectiveness of integrating federated learning,
mobile edge computing, and data transmission
techniques within the 6G core network architec-
ture, highlighting the significant impact of dis-
tributed learning strategies on improving model
performance and generalization capabilities.

We also evaluate the performance of the per-
sonalized model v. Figure 6 illustrates the vari-
ations in test accuracy on the test set for the
personalized model v and the local model w with-
in the 6G-DTFP framework after applying Differ-
ential Privacy (DP) with Gaussian noise for privacy
protection. The results indicate that the testing
accuracy of model v consistently exceeds that of
model w, reaching a peak accuracy of 63.26 per-
cent by the 79th round, while model w fluctuates
around 62 percent. This demonstrates the effec-
tiveness of the personalized model design.

Furthermore, model v exhibits a greater speci-
ficity in leveraging local data knowledge, enabling
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it to more effectively adapt to the unique needs
of specific users or scenarios. The superior per-
formance of model v may stem from its ability
to fully utilize local data characteristics while also
indirectly learning from the data features of other
clients on a global scale. This approach allows
model v to capture the diversity of user behav-
ior and requirements while maintaining a strong
focus on security.

CONCLUSION

This article presents the Digital-Twin-Enabled
Privacy-Preserving Federated User Prediction
Framework for 6G Mobile Edge Computing
(6G-DTFP), which features low communication
costs and strong privacy protection. To address
the high costs of communication and training
in real-world scenarios, we leverage digital twin
technology to connect physical and virtual envi-
ronments, avoiding resource wastage through
blind experimentation. By incorporating Feder-
ated Learning (FL) and differential privacy tech-
niques, we propose a distributed architecture for
6G MEC User Prediction, ensuring the security
of model parameters during communication. The
personalized model v further improves the mod-
el’s performance. Simulation results demonstrate
that 6G-DTFP enhances security and efficien-
cy, significantly improving accuracy, and shows
potential for deployment in 6G networks. In the
future, we plan to optimize the user prediction
model and refine the federated aggregation
schemes to establish a more efficient and fair
architecture for 6G MEC. This will require close
collaboration between the system’s Al compo-
nents and network management aspects.

Simulation results demon-
strate that 66-DTFP enhances
security and efficiency,

significantly improving accu-
racy, and shows potential for
deployment in 6G networks.
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