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Abstract
MEC is set to play a pivotal role in 6G, support-

ing the Internet of Everything. 3GPP has proposed 
user mobility analysis and prediction methods to 
manage vast user data. However, by bringing ser-
vices closer to the network edge, MEC improves 
user access efficiency and exposes user predic-
tions, including location data, to greater privacy 
risks and potential malicious attacks. Additionally, 
conducting experiments on large-scale user pop-
ulations increases communication and training 
costs. To address these challenges, we propose 
the Digital-Twin-Enabled Privacy-Preserving Fed-
erated User Prediction Framework (6G-DTFP) for 
6G MEC. This architecture incorporates a person-
alized model, enhances training efficiency, and 
strengthens privacy protection using differential 
privacy mechanisms. By leveraging Digital Twin 
technology, it maps real user entities to the virtual 
environment, improving insights into user charac-
teristics and optimizing resource utilization. Exper-
imental results show that this framework offers 
reliable user prediction and aligns with the sustain-
able development goals of 6G networks.

Introduction
With the advancement of research into sixth-gen-
eration (6G) mobile communication networks, 
the integration of Mobile Edge Computing (MEC) 
technology is increasingly recognized as crucial 
for 6G [1]. 6G maintains the cloud-edge-termi-
nal collaborative architecture of 5G. However, 
6G offers greater capacity, higher data rates, 
and lower latency [2]. It enhances connectivity 
among intelligent entities [3]. This creates a het-
erogeneous user dataset and introduces inter-net-
work challenges, increasing response times and 
costs [4]. The 3rd Generation Partnership Proj-
ect (3GPP) advocates introducing user predic-
tion mechanisms to address efficiency and cost 
challenges [5]. TR 23.700-80 highlights that the 
requirements for user mobility prediction of the 
core network mainly focus on assisting the Appli-
cation Function (AF) in selecting User Equipment 
(UE). TR 23.700-84 emphasizes that analyzing 
user mobility via Network Data Analytics Function 
(NWDAF) can capture UE location characteristics, 
helping optimize Quality of Service (QoS) strate-

gies. These requirements are addressed in the UE 
mobility analytics of TS 23.288, which defines the 
format of mobility prediction outputs, including 
UE ID, time slot entry, duration, and other details.

In 3GPP standards, the RAN-Based Notification 
Area (RNA) user prediction mechanism reduces sig-
naling overhead by configuring a set of Cells or TAs, 
allowing the UE to move within this area without fre-
quent location updates. Cell-level prediction leads to 
excessive signaling in high-mobility scenarios, while 
TA-level prediction lacks accuracy for 6G services. 
We propose a compromise using gNodeB-level 
mobility analysis to balance positioning accuracy 
and signaling overhead, independent of the UE 
RRC connection state. Before user prediction, con-
nection records between devices and gNodeB are 
collected and converted into sequential patterns 
to set initial conditions. This solution is a core net-
work-layer prediction, while RNA is a passive opti-
mization mechanism in the access network. The two 
mechanisms can complement each other through 
cross-layer interaction and do not serve as substi-
tutes. To balance computation and transmission 
delays, user prediction is migrated from network 
nodes to MEC nodes, and multiple MEC nodes 
are adopted to enhance autonomy and improve 
the model efficiency. With massive heterogeneous 
data, MEC edge servers experience increased load, 
but gNodeB-level user prediction helps guide MEC 
operational decisions, distributing load pressure. This 
approach avoids traditional traversal mechanisms, 
offering efficient solutions for paging and improving 
network performance and service quality [6].

While efficient user prediction is critical, 
addressing the privacy exposure and security 
risks associated with aggregating user location 
information is equally important. The International 
Telecommunication Union’s Radiocommunication 
Sector (ITU-R) underscores security, privacy, and 
resilience as fundamental principles in the design 
of 6G, prioritizing user safety [7]. In this context, 
Federated Learning (FL) [8] protects privacy by 
decentralizing model training and computation, 
making it ideal for MEC User Prediction. Local 
models are trained on clients, and their updates 
are aggregated into the global model, allowing 
for knowledge sharing across clients while ensur-
ing privacy by avoiding raw data exchange. In 
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the IID Scenario, the global model replaces local 
models for testing, leveraging shared knowledge 
for higher accuracy. FL enhances scalability and 
efficiency by allowing local learning and exchang-
ing only model updates, making it well-suited for 
the dynamic 6G network environment. Further-
more, deploying computing resources close to 
FL clients within MEC environments significantly 
reduces communication delays traditionally asso-
ciated with FL, facilitating large-scale learning in 
6G networks. However, existing FL algorithms 
face challenges in managing diverse and hetero-
geneous datasets [9] in 6G edge network, where 
clients have distinct data distributions. Direct 
deployment of the global model leads to slower 
accuracy improvements and may not fully align 
with the current 6G MEC architecture. Therefore, 
a secure and efficient federated learning frame-
work is urgently needed to develop one specifi-
cally designed to accommodate the diverse and 
heterogeneous user data of 6G MEC User Predic-
tion. Such a framework would enable local clients 
to access global model knowledge without neces-
sitating model transmission, effectively addressing 
the security concerns associated with model prop-
agation in traditional FL approaches.

Given the increased scenario diversity and 
component heterogeneity in 6G networks, MEC 
User Prediction and FL interactions lead to sig-
nificantly heightened communication and training 
costs. Digital Twin (DT)[10] technology provides 
a means to create virtual models that mirror the 
real world through data interactions, enabling the 
simulation and prediction of the 6G MEC network 
environment. DT facilitates real-time monitoring of 
the 6G network and leverages robust communica-
tion and computational capabilities to minimize 
resource expenditure while promoting energy effi-
ciency and emission reduction[11]. However, the 
application of DT within MEC User Prediction for 
6G networks remains in its nascent stages, primar-
ily due to challenges related to trust and privacy 
concerns associated with the sharing of sensitive 
user location information. To address these chal-
lenges, integrating FL with DT technology offers a 
promising strategy for mitigating privacy risks and 
communication costs.

Despite the benefits of integrating MEC, FL, 
and DT technologies, the industry currently lacks 
practical and effective user prediction mech-
anisms for 6G MEC. These mechanisms should 
combine the three technologies and be com-
patible with the distributed architecture of 6G. 
Additionally, they must address diverse, hetero-

geneous, and privacy protection requirements for 
user prediction. This article proposes a practical 
Digital Twin-Enabled Privacy-Preserving Federated 
6G MEC User Prediction Framework (6G-DTFP). 
The architecture uses DT to map the real world 
into a virtual space. This allows real user features 
to be integrated into the MEC network, effectively 
linking users with the MEC system. The 6G Fed-
erated User Prediction captures user data from 
the real world. It enables local prediction tasks 
as needed. Results are then sent to the service 
layer to meet user needs. This improves training 
efficiency and service quality. 

To handle data heterogeneity among clients, 
the framework aggregates each client model. 
Differential Privacy (DP) [12] techniques are 
employed further to secure the models during the 
upload and download processes.

6G-DTFP is expected to bring numerous bene-
fits to the intelligent world, as shown in Fig. 1. The 
main contributions of this article are summarized 
as follows:
•	 We propose a novel 6G Digital Twin Feder-

ated User Prediction Framework (6G-DTFP) 
that integrates Digital Twin technology with 
Federated Learning to achieve efficient and 
privacy-preserving user prediction.

•	 Our framework uniquely combines Digital Twin 
for real-time network simulation with Federat-
ed Learning for decentralized model training, 
effectively addressing the challenges of data 
heterogeneity and privacy in 6G networks.

•	 We enhance Federated Learning by incorpo-
rating differential privacy techniques, ensur-
ing the secure aggregation of global models 
while allowing local retention of personalized 
models. This approach mitigates privacy risks 
and improves security in 6G MEC scenarios.

Key Design Requirements
In November 2023, Purdue University, in collabora-
tion with Ericsson, Intel, Nokia, Qualcomm, Cisco, 
and Dell, released the 6G Global Roadmap: A Tax-
onomy [13], which highlights four critical issues in 
the development of 6G: scalability, sustainability, 
trustworthiness, and digital inclusivity. Among these 
critical challenges, we focus on scalability and sus-
tainability, proposing a systematic 6G-DTFP (Dis-
tributed, Flexible, Trustworthy, and Personalized) 
framework. The key design requirements that this 
framework needs to meet are as follows:

Scalability: With 6G expected to support 125 
billion devices by 2030[14], handling vast and 
diverse data is crucial. This progression drives the 

FIGURE 1. Benefits of Integrating MEC, FL, and DT.

Direct deployment of the 
global model leads to slower 
accuracy improvements and 
may not fully align with the 

current 6G MEC architecture.
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transformation of 6G from a core communication 
technology to a foundational infrastructure for 
digital ecosystems. However, the devices’ diver-
sity and massive data heterogeneity present sig-
nificant challenges for 6G. In the next section, 
we propose a Privacy-Preserving Federated User 
Prediction Framework to meet this requirement. 
This framework integrates FL with MEC, efficient-
ly handling the heterogeneous data from clients 
while supporting devices’ dynamic joining and 
departure, ensuring excellent scalability. Addition-
ally, incorporating DP effectively reduces the risk 
of attackers inferring user information, fully meet-
ing the requirements for trustworthiness.

Sustainability: Climate change is one of human-
ity’s major challenges, with electricity consump-
tion being a significant source of greenhouse gas 
emissions. Additionally, the scarcity of critical met-
als limits hardware manufacturing. Relying solely 
on hardware innovation will not meet the future 
demands of 6G networks [15]. Thus, the new 6G 
framework must address sustainability require-
ments. We propose a Digital Twin-Enhanced Fed-
erated User Prediction Framework (6G-DTFP) to 
meet this requirement. It builds AI models for user 
prediction and integrates DT to optimize resource 
utilization and achieve sustainability goals.

Privacy-Preserving Federated User Prediction 
Framework

To meet the design requirements for scalability, 
as stated earlier, we propose a privacy-preserving 
personalized Federated User Prediction mecha-
nism for 6G MEC, as illustrated in Fig. 2.

First, Fig. 2a presents the Trs-PRE architec-
ture, an improved transformer model for user 

prediction in 6G edge networks. We extracted 
sequential data x  R3X from telecom network 
user data, where X is the sequence length. Then, 
the input sequence data x  R3X is divided into 
three independent sequences x(i)  R3X, i = 1, 2, 
3, based on start time, gNodeB longitude, and lat-
itude. This division helps mitigate overfitting. Each 
sequence is processed through a patch-based 
Transformer backbone during forward propa-
gation, ensuring that the output from the Linear 
layers remains independent, thereby enhancing 
prediction accuracy. During this process, we use 
the Mean Squared Error (MSE) loss between the 
predicted values ŷ(i) and the actual values y(i) to 
guide the Trs-PRE model training. Finally, we input 
the predicted and actual values into a 2D KD-tree 
for the nearest neighbor search. If the nearest 
neighbor returned is the same, the prediction is 
considered correct. Otherwise, it is deemed incor-
rect. The total accuracy is calculated based on this 
principle, determined by dividing the number of 
correct predictions by the total number of instanc-
es in the dataset. Trs-PRE demonstrates substantial 
data collection and analysis capabilities, allowing 
it to accurately predict user locations even with 
an expanding user base, thus ensuring scalability. 
Given the large and diverse user population in 6G 
scenarios, centralized data processing can con-
sume significant resources. It may not fully exploit 
the advantages of various data types, potentially 
leading to privacy breaches. Therefore, there is a 
pressing need for a highly trustworthy and adapt-
able 6G MEC user prediction mechanism.

Figure 2b illustrates the federated user predic-
tion mechanism within the 6G MEC framework to 
integrate MEC and FL technologies. We deploy 
the 6G-DTFP within the 6G Core Network, where 

FIGURE 2. The Architecture of MEC with Personalized Federated Learning (6G-PFUP). (c) consists of seven key stages:  Send Local Data to Local Model w and 
Personalized Model v.  Local Model w use the Local Data to update.  Add Gaussian noise to Local Model w to obtain ~w.  Update the Noised Local 
Model ~w to Edge Server.  Aggregate to produce Global Model W from ~w.  Add Gaussian noise to Global Model W to obtain ~W.  Download the Noised 
Global Model  

~
W, use  

~
W to overwrite w for training on local data, and also use  

~
W to calculate LPenalty to assist v in training on local data.

The total accuracy is 
calculated based on this 
principle, determined by 
dividing the number of 

correct predictions by the 
total number of instances in 

the dataset. 
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the Cloud Layer services are implemented on the 
Central NWDAF, the Edge Layer services oper-
ate on the Edge NWDAF, and each Data Layer 
component is deployed within the Local AMF. By 
leveraging MEC technology, computational and 
storage resources are shifted from the centralized 
cloud to the network edge, enabling function off-
loading, improving response times, and optimiz-
ing resource utilization. The Cloud Layer provides 
large-scale storage and computing in this frame-
work, efficiently processing information from the 
Edge Layer while managing network resources. 
This ensures effective resource allocation and 
load balancing between edge nodes and terminal 
devices within the 6G network. The Edge Layer 
includes edge servers, geodes, and data centers 
that process requests from terminal devices in the 
data layer to optimize resource use. Edge servers 
aggregate local model parameters from terminal 
devices, forming a global model for collabora-
tive training without revealing private data, thus 
enhancing privacy protection. The data layer plays 
a critical role by performing local data processing 
and modeling, improving computational efficien-
cy, and reducing bandwidth reliance.

Finally, to create a trustworthy and sustain-
able federated user prediction mechanism within 
6G MEC, we develop a personalized federated 
algorithm to tackle the heterogeneity of terminal 
data, as shown in Fig. 2c. Each client is assigned a 
local model w and a personalized model v in this 
mechanism. Both models, w and v, deployed the 
Trs-PRE model and are trained on the same data, 
which is the privacy data for their client. The core 
distinctions manifest in their loss function designs 
and parameter transmission mechanisms. For the 
local model w, in each communication round, 
w is initialized with the global model W from the 
edge server. Then, it is trained on the local data-
set using MSE as the loss function, with updated 
parameters uploaded to the edge server for global 
model W aggregation and distribution, facilitating 
cross-client knowledge sharing. For the person-
alized model v, during communication rounds, 
v remains stored locally without being transmit-
ted to the edge server and is not overwritten by 
the global model. It is updated using a composite 
loss function with MSE and a regularization term. 
Minimizing the parameter distance between the 
global model W and the personalized model v 
enhances prediction accuracy for user behavior. 
We retain local and global knowledge through 
the collaboration of three models.

Despite the high security of the personalized 
model v, which does not require transmission, 
local models w involved in aggregation still need 
to be transmitted. In the real 6G environment, this 
process could be susceptible to member infer-
ence attacks, model inversion attacks, and other 
threats. Such attacks may analyze model param-
eters or gradients to infer user information and 
reconstruct training data, potentially leading to 
privacy breaches. Therefore, we follow the pri-
vacy-performance-cost triangular balance princi-
ple when constructing model w and model v. By 
incorporating differential privacy during the model 
upload and distribution process, we apply Gauss-
ian mechanisms to perturb the actual parameters 
of the model, obfuscating the specific details of 
the original parameters to ensure more secure 

transmission of model w and global model W. To 
calibrate the noise magnitude, we rigorously eval-
uate its impact on accuracy and communication 
rounds, achieving an optimal equilibrium among 
efficiency, security, and energy-saving.

The Proposed 6G-DTFP
To meet design requirements for sustainability, we 
propose a Digital Twin-Enhanced Federated User 
Prediction Framework (6G-DTFP), as illustrated 
in Fig. 3. By leveraging the capabilities of digital 
twins, this framework enhances awareness of net-
work conditions and effectively reduces environ-
mental simulation costs associated with a large 
user base. This integration strengthens the feder-
ated user prediction mechanism and promotes 
sustainability and digital inclusivity through opti-
mized resource allocation and equitable access to 
network services.

The 6G-DTFP framework designed in this arti-
cle comprises three layers: the Physical Layer, the 
Digital Layer, and the Service Layer.

Physical Layer
In the 6G-DTFP framework, the physical layer 
collects diversified and heterogeneous data from 
user terminals, serving as the most direct inter-
face for real-world environmental interaction. In 
this layer, physical entities in the real world (e.g., 
base stations and servers) are mapped into dig-
ital models while aggregating data Dj from user 
devices, where j represents the total number of 
users. Given our focus on predicting users’ future 
gNodeB access patterns, the digital twin of user 
uj is denoted as DTj, which is composed of the 
collected data Dj and real-time dynamic state Rj. 
The feedback mechanism incorporates Data Flow 
and Information Feedback, ensuring bidirection-
al information exchange between the Physical 
and Digital Layers. In the Data Flow phase, the 
Physical Layer transmits all digital twins DTj con-
taining user data to the Digital Layer, where sub-
sequent computational tasks are executed. The 
virtual mapping construction and the Data Flow 
component enable efficient data processing with 
minimized resource consumption. Leveraging DT, 
we eliminate the need for resource-heavy physical 
experiments by creating accurate virtual replicas 
for predictive modeling and scenario simulation, 
thus enabling more energy-efficient infrastructure 
optimization in the 6G network.

Digital Layer
The Digital Layer is res ponsible for structuring the 
data transmitted from the physical layer, parsing 
it into data-label pairs. We implement sequence 
length normalization to ensure that data of vary-
ing scales are suitable for model construction and 
real-time analysis. However, directly synchronizing 
raw data to the digital twin system would intro-
duce significant communication load and data 
leakage risks. To address this issue, we designed 
a Privacy-Preserving Federated User Prediction 
Framework (6G-PFUP) within the 6G MEC sce-
narios. Under the 6G-PFUP, local models are 
continuously trained in a digital twin environ-
ment while maintaining privacy, simulating the 
likelihood of users connecting to gNodeBs at the 
next moment. Each client obtains a personalized 
model v retained locally to mitigate privacy risks. 

In the 6G-DTFP framework, 
the physical layer collects 

diversified and hetero-
geneous data from user 

terminals, serving as the 
most direct interface for 

real-world environmental 
interaction.
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This model incorporates local knowledge and inte-
grates global insights from other clients, achieving 
high-precision user prediction services. Notably, 
the Information Feedback in the Digital Layer is a 
crucial component of the feedback mechanism. 
Specifically, the system records the gNodeB infor-
mation currently connected by user uj as Rj. In 
the Information Feedback phase, Rj is returned 
and combined with Dj to update the sequence 
state. This mechanism enables real-time feedback, 
continuously optimizing the prediction model by 
comparing the actual connected gNodeB with 
the system prediction results. Based on 6G-DTFP, 
we can obtain real-time status information about 
the gNodeB the user is connected to and make 
optimization decisions accordingly, significantly 
improving the performance of downstream ser-
vices such as paging.

Service Layer
The Service Layer provides interfaces, user inter-
actions, and intelligent services. It offers personal-
ized, ready-to-use models for each client, facilitating 
interactions between users and administrators while 
delivering innovative services. This article integrates 
the user-prediction-centric 6G-PFUP framework 
within the 6G-DTFP for accurate forecasting of user 
location. Notably, the 6G-DTFP can transform into 
a versatile, digital-twin-enhanced federated architec-
ture that adapts to various scenarios, including smart 
cities, transportation, healthcare, and satellite com-
munications. It supports prediction, analysis, diagno-
sis, and simulation, optimizing the 6G network and 
advancing intelligent services, thus contributing to 
digital transformation and sustainable development.

The 6G-DTFP framework offers an innovative 
solution for the complex application scenarios 
of 6G networks by integrating digital twin tech-

nology with federated learning mechanisms. Its 
multi-layered design enables real-time monitoring 
and optimization of network resources, enhances 
user experience, and safeguards user privacy. The 
framework improves user prediction capabilities, 
which is expected to promote the development of 
intelligent services and support dynamic network 
optimization. We hope this architecture can con-
tribute to sustainable development in the future.

Numerical Results
First, we utilize a comprehensive Shanghai Tele-
com dataset comprising over 7.2 million user pag-
ing access records. This dataset covers six months 
and documents interactions with 3,233 gNodeB 
instances across 9,481 mobile devices. Specifi-
cally, it includes the month, date, start time, end 
time, gNodeB longitude, gNodeB latitude, and 
user ID. To simulate real-world data distribution, 
we construct the Non-IID dataset by Dirichlet Dis-
tribution and allocate 150 clients to edge servers, 
with the number of users in each client ranging 
from 2815 to 4508. Utilizing this dataset, we 
conduct experiments to rigorously evaluate the 
proposed framework’s efficacy and assess the per-
sonalized model’s performance v.

Figure 4 evaluates the performance of Trs-PRE, 
showing the test accuracy changes of the Trs-
PRE model compared to other predictive models 
(including LSTM_FCN, FCN, LSTM, ResCNN, and 
TST) on the test set. As communication rounds 
increase, Trs-PRE exhibits lower volatility and out-
performs other models. In the 41st round, Trs-
PRE achieved an accuracy of 60.40 percent, 
surpassing LSTM_FCN, FCN, LSTM, ResCNN, 
and TST by 2.18 percent, 2.03 percent, 2.04 per-
cent, 3.39 percent, and 2.04 percent in accuracy. 
This performance is attributed to Trs-PRE’s Trans-

FIGURE 3. The architecture of 6G-DTFP.

The framework improves user 
prediction capabilities, which 

is expected to promote the 
development of intelligent 

services and support dynam-
ic network optimization. 
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former-based architecture, which effectively cap-
tures long-range dependencies in time series and 
employs the channel independence mechanism. 
Additionally, compared to TST, the patching oper-
ation used in Trs-PRE improves the efficiency of 
attention calculations. As a result, Trs-PRE demon-
strates faster convergence and superior accuracy.

Figure 5 illustrates a comparative analysis of 
6G-DTFP and the only local method (without 
employing FL or MEC) regarding test accuracy 
on the test set. The 6G-DTFP framework demon-
strates a rapid increase in accuracy during the 
early communication rounds, maintaining a high 
level of performance thereafter, achieving an 
accuracy of 62.42 percent by the 79th round. 
In contrast, the Local model exhibits consider-
able fluctuations in testing accuracy, consistently 
remaining below 62 percent, with certain rounds 
even dipping to 60 percent.

This phenomenon primarily stems from data 
distribution bias caused by individual client users’ 
behavioral patterns and environmental states. In 
such cases, pure local training tends to cause over-
fitting. Furthermore, when the number of users 
with small-sample clients is insufficient, low-accu-
racy clients are likely to occur, adversely impact-
ing all clients’ overall performance and resulting 
in significant performance fluctuations. The good 
performance of 6G-DTFP can be attributed to the 
constraints of the optimization objective and the 
knowledge transfer capability inherent in FL. Since 
the global model aggregates the parameters of all 
local models, the overall optimization objective is 
constrained by both the aggregation strategy and 
the local model optimization goals. This facilitates 
the global model in implicitly extracting com-
mon patterns from the data of individual client 
users through weighted aggregation. Additionally, 
knowledge transfer is realized through aggregat-
ing parameter spaces, endowing the global model 
with global knowledge, and compensating for the 
knowledge that individual clients may not have 
learned but that exists in practice.

The analysis reveals that 6G-DTFP not only 
outperforms the local training results in terms of 
accuracy but also demonstrates superior conver-
gence properties, indicating a tendency toward 
stability over prolonged training periods. Com-
pared to purely local approaches, this framework 
offers enhanced efficiency. These findings validate 
the effectiveness of integrating federated learning, 
mobile edge computing, and data transmission 
techniques within the 6G core network architec-
ture, highlighting the significant impact of dis-
tributed learning strategies on improving model 
performance and generalization capabilities.

We also evaluate the performance of the per-
sonalized model v. Figure 6 illustrates the vari-
ations in test accuracy on the test set for the 
personalized model v and the local model w with-
in the 6G-DTFP framework after applying Differ-
ential Privacy (DP) with Gaussian noise for privacy 
protection. The results indicate that the testing 
accuracy of model v consistently exceeds that of 
model w, reaching a peak accuracy of 63.26 per-
cent by the 79th round, while model w fluctuates 
around 62 percent. This demonstrates the effec-
tiveness of the personalized model design.

Furthermore, model v exhibits a greater speci-
ficity in leveraging local data knowledge, enabling 

it to more effectively adapt to the unique needs 
of specific users or scenarios. The superior per-
formance of model v may stem from its ability 
to fully utilize local data characteristics while also 
indirectly learning from the data features of other 
clients on a global scale. This approach allows 
model v to capture the diversity of user behav-
ior and requirements while maintaining a strong 
focus on security.

Conclusion
This article presents the Digital-Twin-Enabled 
Privacy-Preserving Federated User Prediction 
Framework for 6G Mobile Edge Computing 
(6G-DTFP), which features low communication 
costs and strong privacy protection. To address 
the high costs of communication and training 
in real-world scenarios, we leverage digital twin 
technology to connect physical and virtual envi-
ronments, avoiding resource wastage through 
blind experimentation. By incorporating Feder-
ated Learning (FL) and differential privacy tech-
niques, we propose a distributed architecture for 
6G MEC User Prediction, ensuring the security 
of model parameters during communication. The 
personalized model v further improves the mod-
el’s performance. Simulation results demonstrate 
that 6G-DTFP enhances security and efficien-
cy, significantly improving accuracy, and shows 
potential for deployment in 6G networks. In the 
future, we plan to optimize the user prediction 
model and refine the federated aggregation 
schemes to establish a more efficient and fair 
architecture for 6G MEC. This will require close 
collaboration between the system’s AI compo-
nents and network management aspects.

FIGURE 4. The test accuracy comparison between Trs-PRE and other models.

FIGURE 5. The test accuracy between 6G-DTFP model w and only local.

FIGURE 6. The test accuracy of 6G-DTFP Between model w and model v. 

Simulation results demon-
strate that 6G-DTFP enhances 

security and efficiency, 
significantly improving accu-
racy, and shows potential for 
deployment in 6G networks.
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