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Abstract—With its dual-functional advantages, integrated sens-
ing and communications (ISAC) technologies can be further
extended to satellite communications, enhancing global cover-
age services. However, achieving vast coverage would result in
significant delays and considerable path losses. Motivated by
this, in this paper, we focus on satellite-based ISAC (S-ISAC)
systems and propose a general transceiver design framework
incorporating both transmit waveform and receive filter. Unlike
existing approaches, our approach uses a predictive joint transmit
waveform and receive filter design that eliminates the need of
channel estimation, thereby reducing time overhead. Addition-
ally, a versatile weighting mechanism is designed to allow flexible
prioritization between communications and sensing. To tackle
the intractability of the ISAC transceiver design problem, we
adopt a data-driven deep learning-based approach, where the
model learns to design the transmit waveform and receive filter
from historical channel data. Specifically, we propose a predictive
optimization network (PONet), leveraging convolutional layers
and a Transformer encoder to capture long-term spatial-temporal
features and facilitate the learning capability. Numerical results
demonstrate the effectiveness of the proposed PONet in terms of
communications and sensing rates in S-ISAC networks in various
system settings.

Index Terms—Integrated sensing and communications, deep
learning, waveform, filter, satellite, non-terrestrial networks,
Transformer.

I. INTRODUCTION

INTEGRATED sensing and communications (ISAC) has
become a crucial technology for the future of wireless

systems [1]. The key goal of ISAC is to integrate sensing
and communications into a common resource and device,
thereby enhancing spectrum efficiency and reducing hardware
costs [1]–[3]. To implement ISAC effectively, it is crucial to
design a waveform optimized for both communications and
sensing [4], as they have differing characteristics but rely on

Manuscript received Month XX, XXXX; revised Month XX, XXXX;
accepted Month XX, XXXX. This work has been supported by the SmartSat
CRC, whose activities are funded by the Australian Government’s CRC Pro-
gram. This work was supported in part by the Australian Government through
the Australian Research Council’s Discovery Projects Funding Scheme under
Project DP220101634 (Corresponding author: Wei Xiang).

W. D. Lukito, W. Xiang, C. Liu, P. Lai, and P. Cheng are with the
School of Computing, Engineering and Mathematical Sciences, La Trobe
University, Melbourne, VIC 3086, Australia (e-mail: w.lukito@latrobe.edu.au,
w.xiang@latrobe.edu.au, c.liu6@latrobe.edu.au, p.lai@latrobe.edu.au,
p.cheng@latrobe.edu.au).

G. Mao is with the Research Laboratory of Smart Driving and Intelligent
Transportation Systems, Southeast University, Nanjing, Jiangsu 211102, China
(e-mail: g.mao@ieee.org).

the same resources and devices [5], [6]. While much works
have been done on the ISAC waveform design for terrestrial
networks [5]–[13], satellite communications as a network plat-
form have been largely overlooked. Satellite communications
offer significant advantages, enabling ISAC systems to operate
over vast areas, provide global coverage, and support applica-
tions in remote or hard-to-reach regions [1], [14]. However,
due to the large distances between satellites and terrestrial
systems, two unique challenges are introduced to satellite
communications systems.

Firstly, the signal echoes experience significant path loss,
weakening them considerably, which necessitates the use of
receive filter to extract meaningful information by maximizing
the useful signal [6], [15]–[17]. Therefore, in this work, we
design a satellite-based ISAC (S-ISAC) transceiver framework
that consists of transmit waveform and receive filter parts to
represent the transmitter and receiver, respectively. Although
there have been several efforts on S-ISAC [18]–[21], none
have focused on the transceiver design, particularly the joint
transmit waveform and receive filter design. This joint design
is imperative to achieve more optimal results for practical
ISAC systems, especially the sensing part, as it is affected by
both transmit waveform and receive filter [6]. Secondly, de-
signing transmit waveform and receive filter typically requires
channel estimation [6], [17] that can be achieved via pilot-
based [22] or two-stage [23] procedures. However, in satellite
communications, this process incurs significant time overhead
due to long propagation delays, which can result in outdated
sensing information by the time it is extracted.

As inspired by predictive beamforming approaches for
terrestrial-based ISAC systems [24], [25], we propose a pre-
dictive joint transmit waveform and receive filter scheme that
eliminates the need for extensive real-time channel estimation
to address the challenges caused by large path losses and
delays in S-ISAC networks. By leveraging historical channel
state information, our approach enables the prediction of the
transmit waveform and receive filter for the next time frame,
reducing overhead and ensuring sensing results as up-to-date
as possible. This predictive scheme is especially beneficial
for S-ISAC systems, where minimizing latency and opti-
mizing both communications and sensing tasks are essential
for efficient operation. However, implementing the predictive
transmit waveform and receive filter scheme requires a design
procedure that must be executed for each time frame.

Note that the joint transmit waveform and receive filter
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design is generally a high-dimensional complex task [6], thus
it is extremely challenging to acquire an optimal solution,
especially we eliminate the need of channel estimation. Mean-
while, deep learning (DL)-based approaches offer a promising
alternative for optimization via their powerful data-driven
capability in various wireless communications problems, as
it can transfer a complex computational task to the offline
training and online inference phases. DL is highly effective in
extracting meaningful features from data [9], and it has been
proven for prediction scenarios in wireless communications
systems [24], [25]. Moreover, DL has proven effective in var-
ious optimization tasks in terrestrial-based ISAC networks [8]–
[11]. However, the works in [24] and [25] focus solely
on terrestrial communications, without considering satellite
communications and non-line-of-sight (NLOS) channels. Ad-
ditionally, their reliance on long-short term memory (LSTM)
models limits their ability to capture long-term dependencies
effectively. As highlighted in [26], DL techniques for ISAC
are also envisioned to enable effective coordination between
communications and sensing tasks. In this work, we specifi-
cally leverage the advantage of convolutional neural networks
(CNNs) for extracting spatial information [27] and the Trans-
former for capturing long-term temporal features [28].

Motivated by the aforementioned gaps and the advantages of
DL, in this work, we employ a data-driven DL-based approach
to design a predictive joint transmit waveform and receive filter
for an S-ISAC transceiver. Our proposed predictive scheme
utilizes DL to learn from historical channel information and
directly predict the transmit waveform and receive filter for the
next time frame, thereby significantly reducing execution time.
Additionally, to ensure flexibility in terms of task preference
for the ISAC deployment, we adopt a joint communications-
sensing objective [6], [9], [11], [13] as the criteria for design-
ing transmit waveform and receive filter in this work. The main
contributions of this work can be summarized as follows:

1) We design a general transceiver framework for S-ISAC
systems by formulating a general predictive joint trans-
mit waveform and receive filter optimization problem
that maximizes network utility function which aggre-
gates both communications and sensing utilities, allow-
ing for the flexibility of communications and sensing
preference. This is achieved by utilizing a weighted
normalized sum-rate to aggregate the communications
and sensing utilities, subject to power constraints.

2) We propose a predictive design procedure to jointly
design the transmit waveform and receive filter that
eliminates the need for real-time channel estimation for
each time frame, allowing the design to be executed
using historical channel information, thereby reducing
the overall time overhead. This procedure can be applied
to any predictive design tasks for S-ISAC transceivers.

3) We propose a DL-based data-driven framework to ad-
dress the predictive joint transmit waveform and re-
ceive filter design problem for S-ISAC transceivers,
utilizing a penalty method and normalization to ensure
power constraints are satisfied. Specifically, we propose
a predictive optimization network (PONet) that effec-

tively captures spatial and long-term temporal features
using convolutional layers and a Transformer encoder,
respectively. Numerical results verify that the proposed
network outperforms the baselines in terms of commu-
nications and sensing rates.

The remainder of this paper is organized as follows. Sec-
tion II presents the system model of our considered ISAC
framework and a general problem formulation for design-
ing ISAC transceiver is developed. Then, in Section III, a
predictive ISAC transmit waveform and receive filter design
procedure is proposed to eliminate explicit channel estimation.
In Section IV, we introduce a DL-based solution for predictive
transmit waveform and receive filter design to solve the
formulated problem. Section V verifies the proposed solution
through several simulation results considering a satellite-based
scenario. Finally, Section VI provides the conclusion drawn
from this work.

Notation: Unless otherwise specified, bold uppercase letters,
bold lowercase letters, and normal letters/symbols represent
matrices, vectors, and scalars, respectively. Constants c and j
denote the speed of light (c ≈ 3 × 108 meters per second)
and the imaginary unit, respectively. Notations Ra×b and
Ca×b represent real and complex number sets of size a-by-
b, respectively. CN (µ,Σ) denotes the circularly symmetric
complex Gaussian (CSCG) distribution with mean vector µ
and covariance matrix Σ. U(a, b) denotes the uniform distri-
bution between a and b. IN denotes N -by-N identity matrix.
The function diag(x) creates a diagonal matrix from vector
x. Superscripts T , ∗, and H denote transpose, conjugate, and
Hermitian matrices/vectors operations, respectively. Operators
× and ⊗ indicate scalar multiplication and the Kronecker
product, respectively. The Euclidean distance, Frobenius norm,
and absolute value are represented by ∥(·)∥, ∥(·)∥2F , and |(·)|,
respectively. Finally, Re(·) and Im(·) extract the real and
imaginary parts of a complex value.

II. SYSTEM MODEL & PROBLEM FORMULATION

We consider an S-ISAC framework within an existing
satellite-based IoT network [29], where we enable ISAC by
assigning a satellite as an ISAC transceiver. This framework
is operated at carrier frequency fc. The satellite is equipped
with a pair of transmit and radar receive uniform planar
array (UPA) antennas. The transmit antenna array consists
of NT = Nx

T × N
y
T elements, and the receive antenna array

consists of NR = Nx
R × Ny

R elements. Single transmit and
receive antennas have gains of GT and GR, respectively. The
antennas along the x- and y-axes are separated by distances
δx = 0.5λc and δy = 0.5λc, respectively, where λc = c/fc is
the carrier wavelength. The satellite employs an advance full-
duplex technique [30], [31], and it can receive any signals
during transmission without leakages from the transmitter
side [17]. The position of the satellite is represented by vector
pn,s = [xn,s, yn,s, zn,s]. Fig. 1 illustrates the considered S-
ISAC-assisted IoT network. It is worth noting that S-ISAC
is essential for scenarios involving widely distributed sensing
targets where terrestrial networks are ineffective. To illustrate
the components of the satellite, Fig. 2 is presented.
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Fig. 1. ISAC-assisted satellite IoT network under consideration, featuring a
satellite that communicates with multiple GIDs and senses multiple targets,
where u ∈ {k, q}.
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Fig. 2. Schematic of the considered S-ISAC transceiver where the design
process of ISAC transmit waveform and receive filter is executed on a central
processing unit (CPU).

During the n-th time frame, n ∈ {0, · · · , N − 1}, there is
a transmit waveform with length of L symbols1. Due to the
nature of inactive and active modes of ground IoT devices
(GIDs) [32]–[34], satellite serves K = ξK × Ktotal GIDs per
time frame, where ξK ∈ (0, 1] and Ktotal denote the active rate
and the total number of GIDs, respectively. The indices of
active GIDs in the n-th time frame are represented by the set
Kn. At the same time, there are Q sensing targets of interest
flying within the BS ground footprint area. The indices of
sensing targets in the n-th time frame are represented by the
set Qn. The position of active GIDs and sensing targets during
the n-th time frame is represented by the following vector
pn,u = [xn,u, yn,u, zn,u], where u ∈ {k, q}, k ∈ Kn, and
q ∈ Qn.

A. Communications Model

During the n-th time frame, the received signal matrix at ac-
tive downlink GIDs is denoted as Yn = [yn,1, . . . ,yn,K ]T ∈
CK×L and can be expressed as follows

Yn = HnXn +Nn, (1)

1In this work, a single time frame can also be considered as a single pulse
from the perspective of radar signal processing. Therefore, the duration of a
time frame can be represented by a pulse repetition interval (PRI) [6], [24],
[25].

where Hn = [hn,1, . . . ,hn,K ]T ∈ CK×NT is the chan-
nel state information (CSI) matrix in the n-th time frame,
Xn = [xn,1, . . . ,xn,l] ∈ CNT×L is the transmit waveform
matrix in the n-th time frame, xn,l is the transmit waveform
vector for the l-th symbol in the n-th time frame, and
Nn = [nn,1, . . . ,nn,K ]T ∈ CK×L is the noise matrix in
the n-th time frame, where nn,k ∼ CN (0, σ2

NIL), and σ2
N

is the noise variance. In our considered system model, Xn

serves as a common transmit waveform for both the sensing
and communications tasks.

In practice, the channel between satellite and the k-th active
GID is subject to propagation delay and Doppler shift. How-
ever, in this work, it is assumed that the GIDs are equipped
with mechanisms to counteract these effects, enabling their
mitigation at the GID end [29], [35], [36]. According to
references [18], [34], [37], we model satellite channel model
with Rician fading. Therefore, the channel vector between
satellite and the k-th GID during the n-th time frame can
be written as follows

hn,k = hLOS
n,k + hNLOS

n,k , (2)

where hLOS
n,k and hNLOS

n,k are the line-of-sight (LOS) and NLOS
components, respectively. hLOS

n,k and hNLOS
n,k can be further

expanded as follows [18], [37]

hLOS
n,k =

√
κRϱn,k
κR + 1

axn,k ⊗ ayn,k, (3)

hNLOS
n,k ∼ CN

(
0,

ϱn,k
κR + 1

INT

)
, (4)

where κR is the Rician factor, ϱn,k = GTNT

(
c

4πfcdn,k

)2
is

the channel gain, and dn,k = ∥pn,s − pn,k∥ is the distance
between the k-th GID and satellite in the n-th time frame.
Due to the considerable distances involved, the channel gain
is significantly weakened, impacting both (3) and (4). Mean-
while, axn,k and ayn,k represent the array response vectors for
x- and y-axis and can be written as follows

axn,k =
1√
Nx

T

[1, e−jϑx
n,k , . . . , e−jϑx

n,k(N
x
T −1)], (5)

ayn,k =
1√
Ny

T

[1, e−jϑy
n,k , . . . , e−jϑy

n,k(N
y
T −1)], (6)

where constants ϑxn,k = 2πfcδx
c sin(θyn,k) cos(θ

x
n,k) and ϑyn,k =

2πfcδy
c cos(θyn,k), while θxn,k and θyn,k are the angle of departure

pair for the k-th GID at the n-th time frame. According to [5],
we assume that the downlink channel Hn is considered static
over a single time frame. We also consider CSI to be correlated
across different time frames. Please refer to our simulation
settings in Section V for further explanation.

Regarding the information symbols, let Sn =
[sn,1, . . . , sn,K ] ∈ CK×L denote the received symbol
matrix. Under an ideal condition, the received signal would
match with the desired symbol matrix, such that Yn = Sn.
However, due to multi-user interference (MUI) and noise,
achieving perfect conditions is impossible. By adopting
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per-symbol precoding [5], [6], given Sn, the received signals
at the GIDs can be re-expressed as follows

Yn = Sn + (HnXn − Sn)︸ ︷︷ ︸
MUI

+Nn, (7)

where for each user, the received signal can be extracted as
follows

yn,k = sn,k + (hn,kXn − sn,k)︸ ︷︷ ︸
MUI

+nn,k, (8)

where sn,k represents the sequence of symbols for the k-th
GID in the n-th time frame. Therefore, according to (8), the
signal power can be expressed as E

{
|sn,k|2

}
and MUI can be

expressed as E
{
|hn,kXn − sn,k|2

}
, where E {·} denotes the

expected value operation with respect to the time frame index.
As a result, the signal-to-interference-and-noise ratio (SINR)
for the k-th active GID in the n-th time frame can be written
as follows

γn,k =
E
{
|sn,k|2

}
E {|hn,kXn − sn,k|2}+ σ2

N
, (9)

and it becomes obvious that the SINR can be maximized by
minimizing MUI [5], [6].

Remark 1: Although per-symbol precoding may require the
channel to change slowly, which can be challenging in satellite
communications due to their dynamic nature, it remains prac-
tical in scenarios with low-mobility users or stable beamform-
ing configurations [38]–[40]. Furthermore, channel prediction
techniques i.e., [41], [42], can be employed to enable per-
symbol precoding under more dynamic conditions, ensuring
the practicality of this approach in real-world applications.

Thus far, the necessity of CSI for maximizing the SINR
has been unequivocally demonstrated, as evidenced by its role
in affecting MUI, as shown in (9). By having an accurate
CSI, it is possible to optimize the transmit waveform Xn to
substantially minimize MUI. According to Shannon’s theorem,
enhancing SINR directly implies into higher achievable com-
munications rates [43]. Consequently, within an orthogonal
multiple access (OMA) framework2, the communications rate
achievable by the active GIDs for the n-th time frame can
be articulated as a function of Xn, thereby establishing a
weighted sum-rate (WSR) formulation as follows3

RC(Xn) =
1

K

∑
k∈Kn

βk log2 (1 + γn,k) , (10)

where βk ∈ (0, 1] denotes the priority of the k-th active
GID [44], determined according to their service level agree-
ment (SLA).

2The application of non-orthogonal multiple access (NOMA) could be
explored; however, this would require additional considerations for power
allocation. To simplify our analysis, NOMA will be deferred to future work,
and only OMA is addressed in this study.

3Although (10) is specific to each frame (instantaneous WSR), we consider
all WSR values across multiple time frames in the expectation term of the
subsequent problem formulation.

B. Sensing Model

To initialize the sensing model, we begin with considering
Q sensing targets of interest. By utilizing the same transmit
waveform Xn, the received echoes in satellite En ∈ CNR×L

can be written as follows

En = GnXn +Mn, (11)

where Gn ∈ CNR×NT is the target response matrix (TRM) and
Mn = [mn,1, . . . ,mn,L] ∈ CNR×L is the noise matrix with
mn,l ∼ CN (0, σ2

NINR). The TRM can be further written as
follows [9], [24], [37]

Gn = Γ
∑
q∈Qn

ξn,q
(
bx
n,q ⊗ by

n,q

)H
axn,q ⊗ ayn,q, (12)

where Γ =
√
GTNTGRNR is the total antenna gain, ξn,q =

ςq
2dn,q

is the reflection coefficient of the q-th target, ςq denotes
the radar cross section of the q-th target, and 2dn,q = 2∥pn,s−
pn,q∥ denotes the round-trip distance from satellite to the q-th
target [24]. In contrast to axn,q and ayn,q those are similar to
(5) and (6), bx

n,q and by
n,q represent the array response vectors

for x- and y- axes and can be expanded as follows

bx
n,q =

1√
Nx

R

[1, e−jϑx
n,q , . . . , e−jϑx

n,q(N
x
R −1)], (13)

by
n,q =

1√
Ny

R

[1, e−jϑy
n,q , . . . , e−jϑy

n,q(N
y
R −1)], (14)

where constants ϑxn,q = 2πfcδx
c sin(θyn,q) cos(θ

x
n,q) and ϑyn,q =

2πfcδy
c cos(θyn,q), while θxn,q and θyn,q are the angle of arrival

pair for the q-th target at the n-th time frame.
After satellite receives En, it reconstructs the TRM Gn to

extract sensing information. However, due to substantial path
loss over large distances, the received echoes are significantly
attenuated [18]. Without additional processing, the system
cannot fully extract the available information from these
weakened echoes. Therefore, to obtain more information, a
common method is to maximize the received SINR [6]. A
higher SINR results in a lower mean-squared error (MSE)
of the Gn extraction, where it is directly related to the
maximization of mutual information (MI) or sensing rate [9],
[13], [45]. This can be done by designing a receive filter that
optimizes the sensing performance is crucial. We model the
filtered echo Zn ∈ CNR×L as follows

Zn = WnEn, (15)

where Wn ∈ CNR×NR is the receive filter matrix.
Remark 2: To sense an entire satellite footprint, we can

set Q to approximately infinity (Q ≈ ∞). Additionally, the
sensing targets of interest can be either static or dynamic.
However, for simplicity, in this work, we deliberately choose a
finite–small number for Q and consider the sensing targets are
moving along their trajectories. We will elaborate this further
in Section V.

To obtain the sensing rate, we first need to calculate MI
between Zn and Gn given Xn, then divide it by the time
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frame duration. According to the information theory, MI can
be written as follows

I(Zn;Gn|Xn) = h(Zn|Xn)− h(Zn|Gn,Xn), (16)

where h(·) denotes the differential entropy. By having
h(Zn|Xn) and h(Zn|Gn,Xn), MI can be further expressed
as follows

I(Zn;Gn|Xn) = log2

{
det
(
WH

n REEWn

)
det (σ2

NW
H
n Wn)

}
, (17)

where REE = GnXnX
H
n GH

n + σ2
NINR . For the derivation

of the necessary components in (16) leading to (17), please
refer to Appendix A. To this point, we show that MI depends
on both Xn and Wn. Consequently, the sensing rate can be
formulated as follows [9], [46]

RS(Xn,Wn) =
1

L
I(Zn;Gn|Xn)

=
1

L
log2

{
det
(
WH

n REEWn

)
det (σ2

NW
H
n Wn)

}
. (18)

Remark 3: We consider using the sensing rate as a general
metric for the sensing performance. The sensing rate represents
the limit of information acquisition, therefore it can represent
any physical sensing measurements [13].

Since both the communications and sensing rates depend on
Xn as shown in (10) and (18), it is logical to design an ISAC
transmit waveform that enhances both performance metrics.
Furthermore, to effectively extract sensing information from
the echoes, an optimal receive filter Wn is necessary to max-
imize the sensing performance, as shown in (18). Therefore,
this work focuses on optimizing both Xn and Wn to improve
the communications and sensing performances simultaneously.

C. Problem Formulation

The main objective of this paper is to design an ISAC
transceiver by maximizing the network utility function via
jointly optimizing transmit waveform Xn and sensing receive
filter Wn subject to the transmit waveform and filter power
constraints, given the n-th symbol matrix, CSI, and TRM4.
Generally, in the n-th frame, the problem can be formulated
as follows

max
Xn,Wn

E Sn,Hn,Gn

|Ωτ
n−1,Φ

τ
n−1

U {UC(Xn,Sn,Hn), US(Xn,Wn,Gn)} ,

(19)

s.t. ∥Xn∥2F ≤ Pmax, ∥Wn∥2F ≤ 1, (19a)

where U(·), UC(·), and US(·) represent the utility func-
tions for the network, communications, and sensing, respec-
tively. The usage of Sn, Hn, and Gn in the objective
function indicates which utility depends on it. Meanwhile,
the term ESn,Hn,Gn|Ωτ

n−1,Φ
τ
n−1

in the objective function
denotes the ergodic average with respect to Sn, Hn and

4If we have the information symbols for future time frames, this problem
formulation can be extended to consider multiple future time frames, e.g.
{n, . . . , n+N}. However, to solve this, a minor modification in the proposed
solution is required, specifically an adjustment to the output dimensions.

Gn, given a sequence of historical estimated CSI, Ωτ
n−1 ≜

[H̃n−1, . . . , H̃n−τ ], and TRM, Φτ
n−1 ≜ [G̃n−1, . . . , G̃n−τ ],

of length τ frames5. The use of the ergodic average char-
acterizes the performance of communications and sensing in
the n-th frame, since only historical CSI and TRM data (i.e.,
from frame n−1 to n−τ ) can be utilized when designing the
transmit waveform and receive filter for the n-th frame [43].
As for the constraint, Pmax denotes the maximum transmitted
power and a unit power is considered for receive filter at
satellite for each frame n.

Remark 4: It is important to note that the expectation term
in the objective function (19) is formulated to ensure the
generalizability of the problem. In the general case, both Hn

and Gn may depend on both Ωτ
n−1 and Φτ

n−1. For instance,
in a scenario where a communications user is also observed as
a sensing target. However, in this work, we focus on a specific
scenario where Hn depends solely on Ωτ

n−1 and Gn depends
solely on Φτ

n−1.
Remark 5: Given that U(·) is fundamentally a function of

UC(·) and US(·), it follows intuitively that maximizing U(·)
involves optimizing both UC(·) and US(·). This approach is
applicable to any network utility functions [47], as well as
communications and sensing utility functions, provided they
share the same directional metric (i.e., higher values indicate
better performance). This problem formulation is applicable
to any utility functions.

As a demonstration for this paper, we use a weighted sum
as the network utility to aggregate the communications and
sensing utilities based on their respective normalized rates.
Therefore, the objective function can be rewritten as follows6

U(Xn,Wn) ≜
ρCRC(Xn)

µC,n
+

(1− ρC)RS(Xn,Wn)

µS,n
, (20)

where ρC and (1 − ρC) correspond to the weights for com-
munications and sensing utilities, respectively. As a default
value, we set ρC = 0.5. Meanwhile, µC,n and µS,n denote the
maximum rates for communications and sensing as derived in
Appendix B.

III. PREDICTIVE ISAC TRANSMIT WAVEFORM AND
RECEIVE FILTER DESIGN PROCEDURE FOR

SATELLITE-BASED TRANSCEIVER

Prior to signal transmission and echo processing, the ISAC
transceiver requires the current CSI Hn and TRM Gn to de-
sign the transmit waveform Xn and receive filter Wn [6], [23].
Traditionally, these information is acquired through a channel
estimator, which is typically incorporated into a procedure
that must be executed for each time frame n. The existing
approaches [22], [23] to obtaining Hn and Gn require sub-
stantial estimation overhead, therefore, it may lead to outdated

5H̃n is essentially similar to Hn; however, for each component hn,k as
described in (2), it represents the estimated GID’s distance and direction, d̃n,k

and θ̃n,k , instead of the exact values. Similarly, G̃n mirrors Gn as described
in (12), but represents the estimated target’s distance and direction, d̃n,q and
θ̃n,q , respectively.

6As we aim to eliminate the use of CSI Hn and TRM Gn, and given that
the symbol matrix Sn is provided, we omit these elements from (20).
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Fig. 3. Proposed predictive ISAC transmit waveform and receive filter design procedure compared with two-stage procedure [23] and traditional procedure [22],
where the left arrows indicate the time overhead is being saved. The phase 2–predictive design of our proposed procedure will be realized with a DNN later
in Section IV.

estimates due to the delays caused by the large distances in-
volved in satellite communications [29], [33], [48]. Therefore,
to address this issue, inspired by [24], we propose a predictive
transmit waveform and receive filter design procedure that
eliminates the Hn and Gn estimation process. Therefore, the
prediction of transmit waveform Xn and receive filter Wn

is realized by utilizing historical estimated CSI Ωτ
n−1 and

TRM Φτ
n−1, each of length τ .

In general, our proposed predictive transmit waveform and
receive filter design procedure consists of initialization, signal
transmission and processing, as well as predictive design
phases. However, the initialization phase is only required
during n = 0, where the other phases are required for each
time frame7. To illustrate the proposed predictive transmit
waveform and receive filter design procedure, we present
Fig. 3. The phases of our proposed predictive ISAC procedure
are described as follows:

1) Phase 0–Initialization: This phase only happens when
n = 0. During this phase, a conventional channel estimator is
used to obtain the initial CSI and TRM. Although nonlinearity
in satellite channels can significantly affect channel estimation
and detection, we assume that the adopted channel estimator
effectively address these effects [50]. Furthermore, to gather
more initial data points, the conventional channel estimation
can be repeated consecutively during this phase. For the sake
of simplicity, it does make sense to assume that the prior
information (i.e., CSI and TRM) have been obtained in the
detection phase [7], [24], [25].

2) Phase 1–Signal transmission & processing: After the
initial transmission at n = 0, the transceiver transmits the
waveform predicted during the phase 2 of the previous time
frame (n− 1). When the echoes return to the transceiver, the
receive filter, which also predicted during the phase 2 of the
(n−1)-th time frame, is used to process the incoming echoes.
However, due to the large distances, propagation delays are
unavoidable in both signal transmission and echo reflection.

7Due to the prediction drift [49] and the unavailability of initial historical
data, it is necessary to periodically re-execute the initialization phase at defined
time frame intervals. This re-execution is considered as one cycle of design
procedure. However, to simplify implementation, this study considers only a
single cycle of the design procedure.

3) Phase 2–Predictive design: This phase solves the design
problem as described in (19). Given the historical estimated
CSI and TRM, Ωτ

n−1 and Φτ
n−1, we introduce an intermediate

function fP(·) to implicitly replace the needs of current CSI
Hn and TRM Gn. Thus, the solution to problem (19) can be
obtained by

(Xn,Wn) = fO(Sn, fP(Ω
τ
n−1,Φ

τ
n−1)). (21)

Therefore, as an intermediate approach, optimizing Xn and
Wn is equivalent to optimizing the chain of functions in (21).
However, solving problem (19) is inherently challenging due
to the intractability of deriving a closed-form solution, even for
the intermediate approach. Furthermore, the objective function
and constraints are non-convex with respect to Xn and Wn.
As a realization, we will adopt a data-driven approach to repre-
sent the function fO(Sn, fP(Ω

τ
n−1,Φ

τ
n−1)) using a DNN and

learning the parameters from data, inspired by the learning-
to-optimize approach [51].

Remark 6: Within each time frame, the transmit waveform
Xn and receive filter Wn are jointly designed based on the
given information symbol matrix Sn. This approach optimizes
communications by tailoring Xn to the structure of the trans-
mitted information symbols, which consequently influences
the design of Wn as well. For demonstration purposes in this
work, we assume Sn is a modulated symbol matrix derived
from binary information, where the original bits (ones and
zeros) follow a uniform distribution.

Additionally, Fig. 3 also compares our approach with tra-
ditional pilot-based [22] and two-stage procedures [23]. It is
clearly demonstrated that by employing the predictive design
phase, the entire process is expedited (shown by left arrows
at the end of last time frame), ensuring the use of the most
current information. As a result, the transmit waveform and
filter design are as timely as possible.

Remark 7: The proposed predictive transmit waveform and
receive filter design procedure can be applied to any design
scenarios for S-ISAC framework that typically require a chan-
nel estimation process, as it effectively eliminates the need
for channel estimation. In this work, however, we specifically

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2025.3560619

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Southeast University. Downloaded on May 30,2025 at 11:55:30 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. X, MONTH XXXX 7

Input Prediction
Optimization

Normalization

Normalization
Output

Deep Neural Network

Fig. 4. The proposed DL-based framework to design transmit waveform and
receive filter given historical CSI, TRM, and communications symbols.

leverage its advantage in the context of ISAC transmit wave-
form and receive filter design in satellite-based networks.

IV. DEEP LEARNING-BASED PREDICTIVE DESIGN FOR
ISAC: TRANSMIT WAVEFORM AND RECEIVE FILTER

To implement the predictive joint transmit waveform and
receive filter design phase, we aim to solve problem (19) with a
function, as described in (21), and parameterizing this function
using a DNN via a data-driven approach. First, let fω(·) denote
the network that parameterizes the chain of functions (21),
where ω is the network parameters. Then, using a training
dataset, we train the DNN to optimize its parameters by
minimizing the loss function J(ω) in an unsupervised fashion.
The proposed DL-based scheme to design transmit waveform
and receive filter is illustrated in Fig. 4. In this section, we will
present our proposed solution to realize the function fω(·).

A. Proposed DL-Based Predictive Design Framework

Our proposed predictive DL-based design framework gener-
ally involves several key steps. First, we handle constraints by
transforming the constrained problem into an unconstrained
one. Next, we approximate the objective function using the
Monte Carlo method. This approximation allows us to define
the DNN training loss function. Finally, once the DNN is
well-trained, we obtain a model that results in the optimized
transmit waveform and receive filter. The details of each key
steps are described as follows:

1) Constraints handling: It is important noting that DL-
based approaches are typically designed for unconstrained
optimization problems [27]. To adapt these methods for our
constrained optimization problem, we employ the penalty
method, which effectively transforms the constrained problem
into an equivalent unconstrained one [52]. The transformed
problem (19) can be written as follows

max
Xn,Wn

E Sn,Hn,Gn

|Ωτ
n−1,Φ

τ
n−1

U {UC(Xn,Sn,Hn), US(Xn,Wn,Gn)}

− ψ1

[
max

(
0, ∥Xn∥2F − Pmax

)]2
− ψ2

[
max

(
0, ∥Wn∥2F − 1

)]2
, (22)

where ψi ≫ 0, i ∈ {1, 2} denotes the constant imposed
for violation of the power constraints8. However, it is still

8Determining the value of ψi requires fine-tuning, which can be either fixed
or dynamic [52]. In this work, we select a fixed ψi for ease of implementation.

intractable to derive a closed-form solution for the transformed
problem.

Additionally, to ensure the satisfaction of the constraints in
our particular problem, we deliberately normalize the output
by the Frobenius norm of the original output, as inspired
by [9]. Therefore, let say the original outputs of the DNN
are X0

n and W0
n; then the actual results will be

X̂n =
X0

n

∥X0
n∥2F

Pmax, Ŵn =
W0

n

∥W0
n∥2F

, (23)

thus ensuring that the constraints are always satisfied. This
process compensates for the large path losses by utilizing
the maximum available power. However, this normalization
becomes ineffective for non-power constraints.

Remark 8: After normalization, the penalty terms in (22)
become ineffective, as they will result in zeros. However,
to ensure the generalizability of the framework, we retain
the penalty method as the first step to address constraints,
particularly in cases where the constraints cannot be resolved
through normalization alone.

2) Data-driven approximation: To address the intractability
of the closed-form solution to problem (22), we adopt a data-
driven approach to asymptotically approximate the statistical
expectation involved in the objective function. By leveraging
the powerful feature extraction capabilities of DNN, we can
obtain the solution to the transformed problem. Firstly, let
E{g(Xn,Wn)} represent the transformed objective func-
tion (22). Then, we utilize the Monte Carlo method to ap-
proximate it as follows

E{g (Xn,Wn)} ≈
1

Ns

Ns∑
i=1

g
(
X(i)

n ,W(i)
n

)
, (24)

=
1

Ns

Ns∑
i=1

g
(
fω(S

(i)
n ,Ω

τ(i)
n−1,Φ

τ(i)
n−1)

)
, (25)

where Ns is the number of training samples [53]. Nonetheless,
due to the universal approximation theory [51], the approxi-
mation becomes valid when Ns is sufficiently large [27].

3) Training loss function: Given the expected value approx-
imation, the loss function for the DNN training can be written
as follows

J(ω) = − 1

Ns

Ns∑
i=1

g
(
fω(S

(i)
n ,Ω

τ(i)
n−1,Φ

τ(i)
n−1)

)
, (26)

where the negative objective function is used to represent the
original maximization problem as an equivalent minimization
problem.

4) Training and inference: The optimized transmit wave-
form and receive filter can be acquired from the DNN training
by optimizing ω that minimizes the loss function in an
unsupervised manner. Therefore, the final solution can be
represented as follows

(X̂n,Ŵn) = fω̂(Sn,Ω
τ
n−1,Φ

τ
n−1), (27)

where X̂n and Ŵn represent the optimized transmit waveform
and receive filter, respectively, and ω̂ = argminω J(ω) is
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Fig. 5. Proposed PONet architecture to design predictive transmit waveform and receive filter in ISAC system. This network is a realization of the phase 2–
predictive design within our proposed predictive transmit waveform and filter procedure (please refer to Fig. 3).

the well-trained network parameters. Once the model is well-
trained, the optimized transmit waveform and receive filter can
be acquired by feeding Sn, Ωτ

n−1, and Φτ
n−1 to the model

without additional training required.

B. Predictive Optimization Network (PONet)

To realize the DNN, we propose PONet, specifically de-
signed for predictive joint ISAC transmit waveform and re-
ceive filter design that jointly optimizes communications and
sensing tasks in ISAC systems as shown in Fig. 5. This
network combines CNNs with Transformer model to process
complex-valued data, enabling the joint design of predictive
transmit waveform and receive filter. The layers of PONet are
summarized as follows:

1) Input layer: The input layer of the PONet accepts three
complex-valued matrices: Ωτ

n−1, Φτ
n−1, and Sn. Each of these

matrices contains both real and imaginary components, and
they are processed separately in the subsequent layers. The
temporal dimension τ is maintained throughout the network
to enable temporal modeling.

2) Convolutional layers: The convolutional layers are de-
signed to extract spatial features for each temporal slice
independently. For each frame τ , a pair of 2D CNN are applied
to process the real and imaginary components of Ωτ

n−1 and
Φτ

n−1. Therefore, the architecture includes τ × 2 × 2 CNNs.
Then, the outputs from the CNNs are flattened and transformed
to match the input dimensions required by the Transformer
encoder. This transformation is achieved by concatenating the
outputs, with the first half representing the real component and
the second half the imaginary component. The concatenated
outputs are then organized in temporal sequence before being
fed into the Transformer encoder.

3) Transformer encoder: The Transformer encoder consists
of multiple layers of self-attention and feedforward networks,
allowing it to capture long-term dependencies and interactions
across the entire sequence of time frame indices [28]. This
design enables the network to effectively model the temporal
evolution of CSI and TRM, maintaining adaptability even
over extended sequences. In our network, the Transformer
encoder processes the sequence of features extracted by the
convolutional layers. Before being passed to the next layer,
the outputs of the Transformer encoder are concatenated with
the processed information symbols.

4) Fully-connected (FC) layer: After processing the tem-
poral sequence with Transformer, the network concatenates the
Transformer’s output with [Re(Sn), Im(Sn)]. This combined
output is then fed to an FC layer with a Sigmoid activation
function.

5) Output layers: The output layers comprise two branches
that produce the intermediate complex-valued matrices X0

n

and W0
n. In each branch, the real and imaginary components

are represented by even and odd indices, and the final outputs
are reconstructed as complex-valued matrices. Subsequently,
after applying normalization as described in (23), the network
returns X̂n and Ŵn.

C. Overall Algorithm

The realization of our proposed framework involves two
stages. The first stage is offline training, where the model
learns from a set of training samples to optimize ω, which,
in our case, correspond to PONet’s parameters. The goal of
this training is to minimize the loss function as described
in (26). The second stage is online inference, where the
transmit waveform and receive filter are designed by feeding
the information symbol matrix Sn, historical CSI Ωτ

n, and
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historical TRM Φτ
n into fω̂ . It is important to emphasize

that the predictive design phase in our design procedure, as
illustrated in Fig. 3, corresponds to the online inference stage.
The complete algorithm is detailed in Algorithm 1.

Algorithm 1 Predictive Transmit Waveform and Receive Filter
Design for S-ISAC

Stage 1: Offline training
Input: {(S(1)

n ,Ω
τ(1)
n−1,Φ

τ(1)
n−1), . . . , (S

(Ns)
n ,Ω

τ(Ns)
n−1 ,Φ

τ(Ns)
n−1 )}

Output: fω̂(·)
1: Initiate ω;
2: repeat
3: Update ω using the backpropagation algorithm to

minimize the loss function in (26);
4: until the maximum number of training epochs is reached

or the loss converges
5: ω̂ ← ω; fω̂ ← fω;
Stage 2: Online inference

Input: Sn,Ω
τ
n−1,Φ

τ
n−1

Output: X̂n,Ŵn

6: Compute (X̂n,Ŵn) = fω̂(Sn,Ω
τ
n−1,Φ

τ
n−1);

D. Complexity Analysis

The complexity of the proposed solution encompasses both
the offline training and online inference phases, with each
phase involving the computational requirements of the pro-
posed neural network. First, the complexity of the CNNs
is given by CCNN = O(τLhκHκW(KNT + NRNT)), where
Lh represents the hidden size, and κH and κW denote the
height and width of the kernel size, respectively. Next, the
complexity of dimension matching after the CNN layer can
be expressed as CDM = O(Lh(KNT + NRNT)2ηt), where ηt
represents the dimensionality of the input and output vectors
in the Transformer model.

For the Transformer encoder, the complexity is written
as CTrans = O(LEτη

2
t ), where LE represents the number

of encoder layers. Leveraging the self-attention mechanism,
the Transformer achieves reduced per-layer computational
complexity and enables more extensive parallel processing
compared to traditional recurrent layers [28]. The final design
process includes FC and output layers, where the complexity
of the concatenation process and the fully connected (FC) layer
can be expressed as CFC = O(ηt(ηt + 2KL)). For the output
layers, there are two branches of FC layers, each representing a
specific output, with complexities given by CX = O(2ηtNTL)
and CW = O(2ηtN

2
R).

However, from the above components, the complexity of
the Transformer encoder dominates. Therefore, the complexity
for the offline training and online inference phases can be
approximated as Coffline ≈ O(ImaxNsLEτη

2
t ) and Conline ≈

O(LEτη
2
t ), respectively, where Imax denotes the maximum

iteration number.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we conduct several simulations to demon-
strate and evaluate our proposed framework. Unless otherwise

TABLE I
DEFAULT SIMULATION PARAMETERS

Parameters Default Values
Carrier frequency fc = 11 GHz
Number of active GIDs K = 3 GIDs
Number of sensing targets Q = 3 targets
Signal length L = 10 symbols
Satellite’s position (xn,s, yn,s, zn,s) = (0, 0, 400) km
Satellite’s transmit antenna size Nx

T = Ny
T = 3 antennas

Satellite’s receive antenna size Nx
R = Ny

R = 3 antennas
Satellite’s antenna separation δx = δx = 0.5λc

Satellite’s antennas gain GT = GR = 6 dBi
Satellite’s max. transmission power Pmax = 40 dBm
Noise power σ2

N = −100 dBm
Number of historical frame τ = 3

Duration of signal length ∆L = 3 ms

specified, the default parameters for the simulation is given
in Table I. In our system model, we consider the presence of
communications users and sensing targets.

• Communications users: For ease of implementation, we
deliberately set Ktotal = 3 GIDs and consider ξK = 1,
which means all GIDs are always active. The GIDs are
distributed across an area represented by xn,k = xk ∼
U(−10 km, 10 km), yn,k = yk ∼ U(−10 km, 10 km), and
zn,k = 0 m. Since the satellite and GIDs remain at static
positions9, the LOS component is effectively invariant
from one time frame to the next, resulting in a correlated
CSI across adjacent time frames. Additionally, all users
are being treated equally, therefore, βk = 1. For symbol
mapping, we use quadrature phase-shift keying (QPSK)
modulation for demonstration.

• Sensing targets: As we have mentioned in Remark 2,
we consider the presence of Q sensing targets and we
also consider their mobility10. In this demonstration, we
consider a static altitude for each target. The trajectory
of q-th target can be modeled as follows

xn+1,q = xn,q +∆Lvn,q cosΘn,q, (28a)
yn+1,q = yn,q +∆Lvn,q sinΘn,q, (28b)

where xn,q and yn,q are the x- and y-coordinates, and
vn,q is the resultant velocity of the q-th target at the n-th
time frame. The orientation of the q-th target at the n-
th frame is generated randomly each sample realization
following Θn,q ∼ U(0, 2π). For the ease of implemen-
tation, we deliberately set the altitude and velocity of
sensing targets as zn,q = 50 m and vn,q = 1 m/s,
respectively. The initial position of the targets are x0,q ∼
U(−10 km, 10 km) and y0,q ∼ U(−10 km, 10 km). Re-
garding the reflection coefficient of the target, we inten-
tionally assume a unit radar cross section ςq = 1 without
loss of generality, meaning the reflection coefficient is
influenced solely by the round-trip distance [54].

9For short time durations, we assume a static satellite position to simplify
the analysis [18], [37], as small satellite movements during such intervals
have a negligible effect on the network geometry.

10In this demonstration, we consider several UAVs as sensing targets.
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Fig. 6. Training and testing losses of various comparison schemes.

As for the DL training, we use 2000 data samples11 with
a split factor of 0.2. To optimize the network parameters,
we use the Adam optimizer [55] with an initial learning rate
of 10−3. The learning rate is adjusted adaptively using the
ReduceLROnPlateau method, with a reduction factor of 0.5
and a patience value of 10. The offline training and online
inference are conducted on an AMD EPYC 7313 CPU and an
NVIDIA GeForce RTX 3090 GPU.

To verify the performance of the proposed PONet, we
compare it against the following baselines as their framework
can be easily adopted to our problem12:

• EPDNet [25]: This approach employs a CNN to capture
spatial features, followed by an LSTM module to extract
temporal features. The outputs are then passed through
fusion and decoder modules to generate the final results.

• HCLNet [24]: This method uses a CNN to extract spatial
features, which are then processed by an LSTM module
for each historical time frame. The output is subsequently
combined using FC and linear layers.

• ISACNN [9]: This approach applies a series of CNNs and
a multi-layer perceptron (MLP) to map the input to the
output, using a Sigmoid activation function to produce
the final output.

• Random: This method generates random transmit wave-
forms and receive filters, normalizing them to adhere to
power budget constraints.

To begin with, we compare the performance of the proposed
PONet with the baseline models in terms of convergence
behavior during the offline training and online testing stages,
as illustrated in Fig. 6. Among all the comparison schemes,
PONet demonstrates the fastest convergence, reaching it by

11The data is generated based on the system model and is subsequently
divided into training and testing datasets [9], [10], [24], [25], [41].

12As the original objectives are different, we made slight modifications and
retrained all the comparison schemes to ensure they align with our input data,
i.e., historical CSI and TRM, and the desired output, i.e., the ISAC transmit
waveform and receive filter.
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Fig. 7. Testing performance of the proposed scheme in terms of the
communications and sensing rates under different communications weights.

the fifth training epoch, although HCLNet and ISACNN
eventually converge to a similar minimum point as PONet
later. This result emphasizes that our proposed PONet re-
quires only a few training epochs to achieve convergence.
Additionally, it can be observed that the offline training and
online testing losses exhibit approximately similar values and
convergence behavior, indicating that our model maintains
consistency between the offline training and online testing
stages. While all comparison schemes decrease to a certain
minimum point, the random scheme remains constant. This is
because no optimization takes place in the random scheme, as
it generates a random transmit waveform and receive filter in
each iteration. Particularly, for PONet, we present Fig. 7 that
illustrates its effectiveness in achieving testing convergence
across various communications weights. The results show
that the scheme quickly converges for all communications
weights, with both communications rate and sensing rate
convergence within just a few training epochs. It is important
to note that in the sensing-focused case, when ρC = 0.0, the
communications rate decreases because the communications
utility is excluded from the objective function. Conversely,
in the communications-focused case, when ρC = 1.0, the
sensing rate initially increases but then declines, as the sensing
utility is no longer included in the objective function. The
proposed PONet demonstrates robust performance across all
weights, proving its adaptability in different S-ISAC scenarios.
This highlights the efficiency of PONet in optimizing both
communications and sensing tasks, making it well-suited for
practical applications. In practice, the training is terminated
once the model converges. This early convergence not only
demonstrates the efficiency of our model but also indicates
its ability to quickly optimize the objective function, reducing
overall training time compared to baselines.

After PONet is well-trained, we present more results to
assess the testing performance. In this testing, we intentionally
exclude the performance of the network utility function as
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Fig. 8. Communications and sensing rates with different communications
weights of various comparison schemes.

described in (20) since it lacks direct physical interpretation.
Instead, we present the actual performance in terms of com-
munications and sensing rates.

First, we present Fig. 8 to further evaluate the performance
of communications and sensing rates under different commu-
nications weights. Across all comparison schemes, it is evident
that as the communications weight increases, the communica-
tions rate also rises while the sensing rate decreases, except
for the random scheme as it is constant for all communications
weights. Therefore, it demonstrates that our proposed PONet
exhibits the same trade-off behavior as the existing baselines
in terms of the performance between communications and
sensing. Moreover, Fig. 8 also demonstrates that our proposed
PONet achieves the best sensing rate across all communica-
tions weights. It is worth noting that the communications rate
is more sensitive to changes in the communications weight
than the sensing rate, making the selection of an appropriate
communications weight crucial for optimizing overall S-ISAC
performance.

To evaluate the impact of the number of historical time
frames τ on both communications and sensing rates, we
present Fig. 9. Specifically for PONet, we observe that using
more historical time frames leads to a slight increase in com-
munications rate, while the sensing rate remains constant13.
Additionally, PONet consistently achieves the highest com-
munications and sensing rates across all comparison schemes.
Although other benchmarks do not exhibit a clear trend, PONet
proves to be the most effective in capturing temporal depen-
dencies within the satellite communications network. While
HCLNet [24] and EPDNet [25] have demonstrated success
in predictive tasks for ISAC-assisted ground-based vehicular
networks, they fall short in transmit waveform and receive

13Although increasing τ improves communications performance, using a
large number of τ is not advisable, as it needs more input data and imposes
additional burden on the CPU when designing the transmit waveform and
receive filter.
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Fig. 9. Effect of historical time frames number of various comparison
schemes.

filter design for S-ISAC systems. These findings confirm that
our proposed PONet performs well in the predictive design
of transceivers for the considered satellite communications
scenario.

Next, we present Fig. 10 to illustrate the impact of the
number of data samples on performance. We deliberately
compare the performance with total data samples of sizes
10, 100, 1000, 2000, and 500014. For PONet, it is clearly
shown that as the number of data samples increases, the
performance improves accordingly. Notably, we observe that
2000 data samples are sufficient to achieve a well-optimized
design. In contrast, for smaller sample sizes, some benchmarks
exhibit inconsistent slopes for communications and sensing
rates, along with instability due to overfitting. However, for our
proposed PONet, the relationship between data samples and
performance is linear and smooth. This experiment demon-
strates that PONet performs well with just 2000 data samples,
maintaining a consistent slope for both communications and
sensing performances, thereby underscoring the superiority of
PONet compared to other baseline schemes in terms of the
S-ISAC systems.

Regarding the design parameter, we examine the impact
of signal length on the performance of the S-ISAC system,
as it is a crucial parameter for transmit waveform design in
both communications and sensing tasks. Fig. 11 illustrates that
across all comparison schemes, increasing the signal length
leads to an increase in the communications rate. However,
the sensing rate decreases as the signal length grows. Our
proposed PONet consistently delivers the best performance
for signal lengths of six or more (L ≥ 6). In practical terms,
a signal length of less than six (L < 6) is inadequate for
accommodating more data in communications. Additionally,
we observe that the performance gap between PONet and
the second-best scheme widens as the signal length increases,

14With 80% of the data utilized for training, the size of training samples
are as follows: 8, 80, 800, 1600, and 4000.
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Fig. 10. Number of data samples vs. the communications and sensing rates
of various comparison schemes.
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Fig. 11. Signal length vs. the communications and sensing rates of various
comparison schemes.

further highlighting the superiority of the proposed PONet in
communications performance. It is also worth noting that the
relationship with sensing rate is inverse; longer signal lengths
result in lower sensing rates, which aligns with the expected
behavior indicated by (18). Therefore, it is crucial to choose
a signal length L that optimizes performance for one task
without significantly compromising the other.

Finally, we present Fig. 12 to illustrate that our proposed
scheme consistently adheres to the power budget constraints
in both transmit waveform and receive filter design. The
figure clearly shows that across various simulation settings,
represented by different communications weights, the power
of the transmit waveform remains bounded by 40 dBm, and
the power of the receive filter stays within 30 dBm (unit
power). This demonstrates that our proposed scheme is ap-
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Fig. 12. Required power for transmit waveform and receive filter across
different weighting scenarios.

plicable across various scenarios. Furthermore, this highlights
the efficacy of the normalization approach outlined in (23) for
rigorously enforcing the power budget constraints.

VI. CONCLUSION

In this paper, we investigated ISAC in satellite communi-
cations networks and develop a predictive S-ISAC transceiver
design framework. The design objective is to maximize net-
work utility, by jointly optimizing ISAC transmit waveform
and receive filter design, with the objective realization being
a weighted sum of communications and sensing normalized
rates maximization. Firstly, we proposed a predictive ISAC
procedure that eliminates the channel estimation overhead,
ensuring that the information remains as current as possible.
Then, given the formulated problem is intractable for con-
ventional optimization solvers, we adopted a DL-based data-
driven framework as a solution, specifically we propose PONet
to solve the design problem. The effectiveness of the proposed
solution in terms of communications and sensing rates were
validated through numerical simulations, which compared its
convergence behavior, trade-off between communications and
sensing, and the impact of historical time frames, data samples,
and signal length. Last but not least, we demonstrated that the
power budget constraints are satisfied.

APPENDIX A
DERIVATION OF MI (17)

To determine MI I(Zn;Gn|Xn) as outlined in (16), we
need to calculate two entropies: the entropy of Zn given Xn,
and the entropy of Zn given both Gn and Xn. Firstly, when
Xn is known, Zn is expressed as follows

Zn|Xn = WH
n GnXn +WH

n Mn. (29)

The covariance matrix of Yn given Xn as follows

ΣZn|Xn
= WH

n (GnXnX
H
n GH

n + σ2
NI)Wn. (30)

The differential entropy can thus be written as follows

h(Zn|Xn) = log2 det
(
πeΣZn|Xn

)
. (31)

Secondly, when both Gn and Xn are known, Zn is given by

Zn|Gn,Xn = WH
n Mn. (32)

The covariance matrix of Zn given Gn and Xn can be written
as follows

ΣZn|Gn,Xn
= σ2

NW
H
n Wn. (33)
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Thus, the differential entropy can be expressed as follows

h(Zn|Gn,Xn) = log2 det
(
πeσ2

NW
H
n Wn

)
. (34)

Finally, by substituting (31) and (34) into (16), we can write
MI as follows

I(Zn;Gn|Xn)=log2det
(
ΣZn|Xn

)
−log2det

(
σ2

NW
H
n Wn

)
,

(35)

where the πe term is canceled out due to the properties of
the logarithm. Therefore, using another logarithmic property
log a − log b = log a

b , (35) can be re-expressed as (17). This
concludes the derivation.

APPENDIX B
THEORETICAL MAXIMUM COMMUNICATIONS AND

SENSING RATES FOR (20)

The maximum communications rate µC,n can be intuitively
obtained under the assumption of ideal conditions, where
MUI is zero. Therefore, (9) can be simplified to γn,k =
E{|sn,k|2}/σ2

N. Since we assume the same constellation for
every GIDs, we can write E{|sn,k|2} = Pn,k. Therefore, we
can substitute into (10) as follows

µC,n =
1

K

∑
k∈Kn

βk log2

(
1 +

Pn,k

σ2
N

)
, (36)

where Pn,k is the k-th GID’s received power in the n-th time
frame.

To determine the theoretical upper bound of the sensing
rate µS,n, we begin by exploiting eigenvalue decomposition on
GnXnX

H
n GH

n . Let λi be the i-th eigenvalue, we can rewrite
REE as utilized in (17) as follows

REE = U
(
Λ+ σ2

NI
)
UH , (37)

where Λ is a diagonal matrix with λi, i ∈ {1, . . . , NR} become
the diagonal elements, and U is a unitary matrix. Since
the determinant of REE can be expressed as det (REE) =∏NR

i=1

(
λi + σ2

N

)
, thus, the numerator inside the logarithmic

term of (17) can be written as follows

det(WH
n REEWn) = det(WH

n U(Λ+ σ2
NI)U

HWn). (38)

By utilizing a property of determinant that det(ABC) =
det(A) det(B) det(C) and the fact that U is unitary (UHU =
I), we can further expand (38) as det(WH

n REEWn) =
det(WH

n U) det(Λ+ σ2
NI) det(U

HWn).
For the denominator inside the logarithmic term of (17), the

determinant of WH
n Wn can be expressed as det(WH

n Wn) =∏NR
i=1 µi, where µi is the i-th eigenvalue of WH

n Wn. There-
fore, it is obvious that to maximize MI, we need to maximize
the determinant ratio.

Given that det(WH
n U) = det(UHWn) and using the

properties of determinants, the expression can be simplified
as follows

I(Zn;Gn|Xn) = log2

(
NR∏
i=1

(
λi + σ2

N

σ2
Nµi

))
. (39)

The eigenvalues λi are maximized when the power constraint
is fully utilized. Since ∥GnXnX

H
n GH

n ∥2F =
∑NR

i=1 λi ≤

λmaxNR, the upper bound of MI occurs when λi = λmax,∀i ∈
{1, . . . , NR}, where λmax is the maximum eigenvalue of
GnG

H
n . For the normalization of Wn, the eigenvalues µi of

WH
n Wn must satisfy ∥Wn∥2F ≤ 1, ensuring that

∑NR
i=1 µi ≤

NR. The term 1
µi

is maximized when µi = 1,∀i, making∏NR
i=1 µi = 1. Therefore, the upper bound for MI can be

simplified as I(Zn;Gn|Xn) = log2

(∏NR
i=1

(
1 + λi

σ2
N

))
, with

λi = λmax,∀i. Finally, the theoretical maximum sensing rate
can be written as follows

µS,n =
NR

L
log2

(
1 +

λmax

σ2
N

)
. (40)

This completes the derivation.
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