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Abstract—Integration of global navigation satellite system
(GNSS) and inertial navigation system (INS) presents significant
potential for high-precision vehicle localization. However, this
approach suffers from cumulative INS errors in GNSS-denied
environments. To address this issue, this paper proposes a method
to correct the navigation errors due to INS by using Internet
of Things (IoT)-based vision positioning. More specifically, this
method employs a binocular camera to assist in obtaining the
vision positioning of the vehicle through recognition of LED
lights installed in a type of ubiquitously deployed IoT devices that
are increasingly used in smart transportation systems. The final
navigation outcomes are attained by fusing the vision positioning
results with INS information using an unscented Kalman filter
(UKF). Real-world experiment results validate the effectiveness
of the proposed vehicle localization method.

Index Terms—Vehicle localization, Internet of Things (IoT),
vision positioning, inertial navigation system (INS), unscented
Kalman filter (UKF).

I. INTRODUCTION

An accurate and robust vehicle localization system is impor-

tant for intelligent driving and intelligent transportation system

applications [1], [2]. There are a lot of vehicle localization

techniques using diverse sensors, including cameras, LiDAR,

RADAR, ultrasonic sensors, and inertial measure units (IMUs)

[3], [4]. The most widely used localization method is the

global navigation satellite system (GNSS), which can pro-

vide a low-cost and readily accessible solution for vehicle

localization [5]. However, due to the susceptibility of the

GNSS to interference, the navigation frameworks relying on

GNSS become unreliable in many scenarios, such as urban

canyons, tunnels, and underground parking lots [6]. Hence, it

is imperiative to find suitable vehicle localization schemes to

achieve reliable localization in GNSS-denied environments.
The odometer-based navigation methods that do not rely

on GNSS information are extensively studied [7], [8], [9].

The odometer data can effectively constrain the divergence

of the INS navigation errors. However, the position errors of

the odometer will still gradually accumulate with time, which

is unacceptable for long-term navigation tasks.
The simultaneous localization and mapping (SLAM) based

vehicle navigation methods have increasingly become research

hotspots, which can improve vehicle localization performance

during GNSS outages [10], [11]. SLAM can eliminate the

accumulative errors in odometry through closed-loop detec-

tion. However, implementing closed-loop detection in open

environments is extremely challenging [6].

The localization methods based on high-definition (HD)

map can provide high-accuracy vehicle positioning without

relying on GNSS [12], [13]. However, the positioning accuracy

may diminish due to a lack of timely updates in HD map

in dynamic environments. Furthermore, the extensive storage

requirements of HD map can impede real-time positioning

capabilities [14].

Most recently, some researchers proposed integrated lo-

calization methods aided by vision positioning. Qu et al.
[15] proposed a geo-referenced traffic sign based localization

approach. In this method, ground control points (GCPs) are

obtained by identifying traffic signs and matching them with

a pre-made dataset. The GCPs are integrated in a bundle

adjustment process to reduce the drifts during vehicle lo-

calization. Wang et al. [5] proposed a vehicle localization

method to improve the vehicle’s positioning accuracy at traffic

intersections by fusing the position information of traffic lights

and the navigation information of inertial navigation system

(INS). In this method, traffic lights are identified by an onboard

camera, and their position information is provided by HD map.

Hu et al. [16] proposed an integrated localization method,

which utilizes the vision positioning deduced from kilometer

signs to correct the navigation errors of the INS/odometer inte-

gration system. The aforementioned localization methods have

a notable limitation that they can only correct the vehicle’s

position in certain scenarios, e.g., traffic intersections, near the

kilometer signs, thus failing to meet the demand for vehicle

localization throughout the entire area.

In this paper, a method to improve the vehicle localization

accuracy in GNSS-denied environments is proposed, in which

an unscented Kalman filter (UKF) is used to fuse vision posi-

tioning results using a type of ubiquitously deployed Internet

of Things (IoT) devices with a prior known position termed

smart studs, which are increasingly used in intelligent trans-

portation systems [17], [18], and INS navigation information.

The vision positioning results is attained by identifying the

LED lights installed inside the smart studs using an onboard

binocular camera. Unlike previous studies that utilized an

extended Kalman filter (EKF) to fuse vision positioning and

INS, a UKF is adopted because its unscented transform (UT)

is expected to reduce linearization errors in EKF. Specifically,

our main contributions are threefold:

1) An IoT-based vehicle localization method is proposed.

In this method, the accumulated positioning errors of INS are



corrected by the vision positioning obtained using IoT devices

as landmarks to achieve continuous and reliable vehicle local-

ization.

2) A UKF is used to integrate the vision positioning and

the navigation information from INS. Compared to EKF, the

UKF achieves higher localization accuracy.

3) Real-world vehicle localization experiments are con-

ducted. The experimental outcomes validate the effectiveness

and accuracy of the proposed method.

The paper is organized as follows. Section II gives an

overview of the proposed vehicle localization method. Section

III introduces the vehicle position fusion based on UKF. The

experimental results are given in Section IV. Finally, the

conclusion and future work are drawn in Section V.

II. OVERVIEW OF THE PROPOSED METHODOLOGY

A. Framework of the Proposed Vehicle Localization System
As an essential component of smart roads, smart studs

are ubiquitously deployed along lane-division lines, road-

boundary lines, or near road surfaces. Once deployed, they

possess long-term stability, which helps avoid frequent up-

dates to map information. The smart studs can actively emit

red/white/yellow light with certain brightness, which can be

detected by vehicle onboard cameras. With these prominent

features, smart studs can serve as excellent auxiliary position-

ing devices.

The overall framework of the vehicle localization method

is shown in Fig. 1. The global positions of the smart studs

are provided by real-time kinematic (RTK) devices, forming

the smart stud position database. A vehicle onboard binoc-

ular camera is applied to detect smart studs using the hue,

saturation, value (HSV) color model [19]. The measured

positions of the vehicle can be inferred using smart studs as

reference and camera as the sensor through binocular vision

and coordinate transformations. These positions of the vehicle

are used as observations for UKF, with the INS updates serving

as predictions for the filtering algorithm. The state corrections

estimated by the UKF are fed back to update the vehicle

positions and compensate for the IMU errors.

The following method is adopted to determine the location

of the light-emitting smart stud recognized by the binocular

camera. An estimated position of the smart stud can be

obtained by binocular vision and coordinate transformations.

The estimated position of the smart stud is compared to the

positions of smart studs in the smart stud position database

and the closest match in the database to the estimated value

identifies the recognized smart stud and the accurate position

of the smart stud is obtained. If there are multiple smart studs

in the image captured by the camera, we select the one closest

to the vehicle.

B. Coordinate Frames and Notations
Some coordinate systems are defined for clearer expla-

nation. The inertial frame is denoted as i-frame and the

Earth-Centered, Earth-Fixed (ECEF) frame is denoted as e-

frame. The navigation coordinate frame is denoted as n-frame,

Fig. 1. Framework of the vehicle localization method.

whose coordinate axes point to the geographic north, east,

and downward, respectively, with its origin coinciding with

the centroid of the vehicle. The IMU body frame is denoted

as b-frame. Its three axes respectively point to the vehicle’s

forward, rightward, and downward directions.

The coordinate systems in the model of binocular vision

include the camera coordinate system (c-frame), the pixel

coordinate system (p-frame), and the image coordinate system

(im-frame). Below, the subscripts l and r will respectively

represent the left camera and the right camera of the binocular

camera. The detailed explanations about these coordinate

systems are provided in reference [20].

C. Positional Relationship between Smart Stud and Vehicle

The positional relationship between the smart stud, camera,

and IMU is shown in Fig. 2. Parameter lc refers to the lever

arm from the left camera of the binocular camera to the IMU,

which can be measured. Let Xc denote the three-dimensional

(3-D) coordinate of the smart stud in the cl-frame, which

can be obtained from the binocular vision measurements as

follows:

Fig. 2. Relationship between smart stud, camera, and INS.

Xc = zc

⎡
⎣ fx 0 u0

0 fy v0
0 0 1

⎤
⎦
−1 ⎡

⎣ ul

vl
1

⎤
⎦ (1)

where fx and fy are the scale factors in the x and y directions

respectively, (u0, v0) is the plane center of the image in the pl-
frame, these parameters can be obtained through calibration,

(ul, vl) is the pixel coordinate of the observed object in the pl-
frame. In this study, (ul, vl) represents the pixel coordinates of

the geometric center of the smart stud, which can be obtained



from the image, zc is the depth value of the observed object,

which can be described as follows:

zc = fx
d

|ur − ul| (2)

where d is the distance between the left camera and the right

camera of the binocular camera, which can be measured, ur

can be obtained from the pixel coordinate in the pr-frame.

The positional relationship between the smart stud, camera,

and IMU can be represented as follows:

pI = pS −D−1
R Cn

b

(
Cb

cXc + lc

)
(3)

where pI is the position of the IMU, pS is the position of

the smart stud, D−1
R is used to transform the north-east-down

meters in the navigation frame into latitude ϕ, longitude λ, and

altitude h, Cn
b is the direction cosine matrix from b-frame to n-

frame, and Cb
c is the direction cosine matrix from cl-frame to

b-frame. Cn
b originates from the attitude algorithm of INS [21]

and Cb
c can be obtained by calibration. D−1

R can be expressed

as follows:

D−1
R = diag

([
1

RM+h
1

(RN+h)cosϕ −1
]T)

(4)

where RM and RN represent the radius of curvature in

meridian and prime vertical, respectively.

III. VEHICLE POSITION FUSION BASED ON UNSCENTED

KALMAN FILTER

A. INS Error Model

The error equations of INS can be established as follows

[22]:

φ̇ = −ωn
in × φ+ δωn

in − δωn
ib (5)

δv̇n = Cn
b δf

b + fn × φ− (2ωn
ie + ωn

en)× δvn

+ vn × (2δωn
ie + δωn

en) + δgn
p (6)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δϕ̇ = − vN

(RM+h)2
δh+ 1

RM+hδvN

δλ̇ = vEtanϕ
(RN+h)cosϕδϕ− vE

(RN+h)2cosϕ
δh

+ 1
(RN+h)cosϕδvE

δḣ = −δvD

(7)

where φ =
[
φN φE φD

]T
is the attitude error vector,

ωn
in = ωn

ie + ωn
en, δωn

in = δωn
ie + δωn

en, ωn
ie and δωn

ie are

the angular rate vector of the e-frame relative to the i-frame

under the projection of the n-frame due to rotation of the

earth and its error, ωn
en and δωn

en are the angular rate vector

of the n-frame relative to the e-frame under the projection

of the n-frame and its error, δωn
ib is the gyroscope drift in

the n-frame, vn =
[
vN vE vD

]T
is the velocity vector,

δvn =
[
δvN δvE δvD

]T
is the velocity error vector, fn

is the specific force vector, δf b is the measurement error of the

accelerometer, δgn
p is the gravity error, δϕ, δλ, and δh denote

the errors of latitude, longitude, and altitude, respectively.

For UKF design, the state vector X is defined as follows:

X =
[
δpn δvn φ bg ba

]T
(8)

where δpn =
[
δϕ δλ δh

]T
, bg and ba are the gyro-

scopes’ biases and accelerometers’ biases, respectively. Both

bg and ba are modeled as first-order Gaussian Markov pro-

cesses.

B. Measurement Equation Based on Smart Stud Vision Posi-
tioning

The estimated position of the vehicle p̂I can be derived

from INS as follows:

p̂I = pI +D−1
R δpn (9)

The measurement position of the smart stud X̃c is

X̃c = Xc − nrc (10)

where nrc represents measurement noise.

The measurement vector Z is defined as the difference

between the estimated position and the measurement position

of the vehicle

Z = DR(p̂I − p̃I) (11)

where p̃I is the measurement position, which can be derived

from (3) and (10).

Substituting (3), (9), and (10) into (11), the measurement

equation can be written as follows:

Z = −Cn
bC

b
cnrc + δpn (12)

C. Unscented Kalman Filter

UKF employs UT to handle the nonlinearity in the propaga-

tion of mean and covariance [23]. Firstly, the UT is introduced.

Define a nonlinear transformation y = g(x), wherein the

variable x, which is n-dimensional, has a mean of x̄ and

a covariance matrix of P . The sigma points, which are the

sampling points of the UT, can be simulated as follows:⎧⎪⎨
⎪⎩

x(0) = x̄ i = 0

x(i) = x̄+ (
√

(n+ ξ)P )i i = 1 ∼ n

x(i) = x̄− (
√

(n+ ξ)P )i i = n+ 1 ∼ 2n

(13)

where the superscript i is the index of sample points, (
√
P )i

represents the i-th column of Cholesky decomposition of P .

The weights associated with these sigma points are computed

as follows:⎧⎪⎨
⎪⎩

ω
(0)
m = ξ

n+ξ

ω
(0)
c = ξ

n+ξ + (1− a2 + β)

ω
(i)
m = ω

(i)
c = ξ

2(n+ξ) , i = 1 ∼ 2n

(14)



where ω
(i)
m and ω

(i)
c are the weights for the mean and covari-

ance of the sigma points, respectively, ξ = a2(n + κ) − n, a
and κ are candidate parameters [24].

In this study, the nonlinear system can be represented as

follows: {
X(k + 1) = f(X(k),ω(k))

Z(k) = h(X(k),υ(k))
(15)

where Xk+1 and Xk are the state vectors at time k + 1 and

time k, respectively, Zk is the measurement vector at time k,

ωk is the process noise vector, vk is the measurement noise

vector, f represents the motion equation, and h represents the

measurement equation, ωk and vk are uncorrelated zero-mean

white noise sequences, namely:⎧⎪⎨
⎪⎩

ω(k) ∼ N(0,Qk)

υ(k) � N(0,Rk)

E(ωkυ
T
j ) = 0

(16)

where Qk and Rk are the process noise covariance matrix and

the measurement covariance matrix, respectively.

Similar to EKF, the UKF algorithm is also divided into the

following two steps.

1) State Prediction:
According to (13), sigma points can be obtained as follows:

X(i)(k|k) =
⎡
⎣ X̂(k|k)

X̂(k|k) +√
(n+ ξ)P (k|k)

X̂(k|k)−√
(n+ ξ)P (k|k)

⎤
⎦
T

(17)

The sigma points are propagated according to the motion

equation:

X(i)(k + 1|k) = f(X(i)(k|k)) (18)

The predicted state X̂(k+1|k) and covariance matrix P (k+
1|k) can be obtained as follows:

X̂(k + 1|k) =
2n∑
i=0

ω(i)
m X(i)(k + 1|k) (19)

P (k + 1|k) =
2n∑
i=0

ω
(i)
c

[
X̂(k + 1|k)−X(i)(k + 1|k)

]
[
X̂(k + 1|k)−X(i)(k + 1|k)

]T
+Qk

(20)

According to (13), (19), and (20), the new sigma points can

be calculated as

X(i)(k + 1|k) =
⎡
⎣ X̂(k + 1|k)

X̂(k + 1|k) +√
(n+ ξ)P (k + 1|k)

X̂(k + 1|k)−√
(n+ ξ)P (k + 1|k)

⎤
⎦
T

(21)
The predicted observation is obtained according to the

measurement equation:

Z(i)(k + 1|k) = h
[
X(i)(k + 1|k)

]
(22)

2) Measurement Update:

According to (14) and (22), the observation mean Z̄(k +
1|k), covariance matrix PZkZk

, cross covariance matrix

PXkZk
and Kalman gain matrix K(k + 1) can be calculated

as follows:

Z̄(k + 1|k) =
2n∑
i=0

ω(i)
m Z(i)(k + 1|k) (23)

PZkZk
=

2n∑
i=0

ω
(i)
c

[
Z(i)(k + 1|k)− Z̄(k + 1|k)

]
[
Z(i)(k + 1|k)− Z̄(k + 1|k)

]T
+Rk

(24)

PXkZk
=

2n∑
i=0

ω
(i)
c

[
X(i)(k + 1|k)− Z̄(k + 1|k)

]
[
X(i)(k + 1|k)− Z̄(k + 1|k)

]T (25)

K(k + 1) = PXkZk
P−1

ZkZk
(26)

Finally, the state X̂(k+1|k+1) and state covariance matrix

P (k + 1|k + 1) are updated as follows:

X̂(k + 1|k + 1) = X̂(k + 1|k) +K(k + 1)[
Z(k + 1)− Ẑ(k + 1|k)

] (27)

P (k + 1|k + 1) = P (k + 1|k)−K(k + 1)

PZkZk
KT (k + 1)

(28)

IV. PERFORMANCE EVALUATION

To validate the proposed method in this paper, we recorded

a driving dataset using a vehicle shown in Fig. 3. It includes

a camera (Stereolabs, ZED 2i), a global positioning system

(GPS) receiver (Topgnss, GNSS 100G), and an integrated

navigation system (Xsens, MTi-680G). The camera mounted at

the front of the vehicle, is utilized for smart stud identification.

The frame rate of the camera is 30 fps, and it has 1280

× 720 image resolution with a field of view (FOV) as

90°×60°. The GPS receiver is mounted on the roof of the

vehicle. The sampling frequency of the GPS receiver is 1

Hz, and its positioning mode is selected as differential GPS.

The integrated navigation system is mounted on the internal

platform in the trunk of the vehicle. The system combines IMU

data and RTK data to provide reference data. The parameters

of the IMU are given in Table I.

A total of 42 smart studs are deployed along both sides of

the road in the campus of Xidian University in Xi’an, China.

The experimental environment is shown in Fig. 4, with the

distance between smart studs set to 15 meters.
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Fig. 3. The experiment vehicle with the camera, the GPS receiver, and the
integrated navigation module.

TABLE I
PARAMETERS OF IMU

Parameters Unit Value
Sample Rate Hz 100

Gyro Bias Stability °/h 8

Gyro Random Walk °/
√
h 0.17

Accelerometer Bias Stability μg 15

Velocity Random Walk m/s/
√
h 0.02

A. Validation of the Proposed Method

The results of the proposed smart stud-aided INS integration

method and GPS-aided INS integration method (GPS/INS)

were compared.

Fig. 5 gives the positioning errors of different navigation

solutions in different directions. The mean and maximum

position errors in the north (N), east (E), and down (D)

directions of different methods are reported in Table II. Com-

pared to the GPS/INS, the mean and maximum position errors

in different directions of the proposed method, respectively,

reduce by 40.7% and 39.3% in the north direction, 33.0%

and 14.3% in the east direction, 88.5% and 86.1% in the

down direction. The results demonstrate that the localization

method assisted by vision positioning achieves higher accuracy

than GPS/INS. This is because GNSS positioning accuracy

is influenced by various factors such as weather conditions,

obstructions, and device processing speed, which may lead to

fluctuations or offsets in GNSS positioning information. This

will result in significant positioning errors for GNSS-based

localization methods. Fig. 6 illustrates a comparison between

the trajectories of various navigation solutions and reference

trajectories.

B. Performance Comparison between UKF and EKF

To compare the performance of the proposed UKF algorithm

and EKF algorithm in fusing vision positioning results and INS

information, the same real-world experimental data was also

processed using EKF algorithm [16], which is the most widely

Fig. 4. Experimental scenario.

Smart Stud-aided INS GPS/INS

Fig. 5. The 3D (north, east, down) position errors of smart stud-aided INS
integration method and GPS/INS.

TABLE II
PERFORMANCE OF SMART STUD-AIDED INS AND GPS/INS

Methods Orientation Mean Pos. Error (m) Max. Pos. Error (m)

N 1.28 4.28
Proposed E 1.46 4..32
Method D 0.22 0.61

N 2.16 7.05
GPS/INS E 2.18 5.04

D 1.91 4.40

used fusion localization algorithm. Fig. 7 shows the position-

ing errors of different algorithms in different directions, and

Table III shows the performance of the EKF. From Table II

and Table III, we can readily conclude that the localization

errors of UKF are smaller than that of EKF.

TABLE III
PERFORMANCE OF EKF ALGORITHM

Orientation Mean Pos. Error (m) Max. Pos. Error (m)

N 1.66 4.76
E 1.72 5.43
D 0.22 0.62

Fig. 6. 3D and 2D trajectories of smart stud-aided INS and GPS/INS.



UKF EKF

Fig. 7. The 3D position errors of UKF and EKF in fusing vision positioning
results and INS information

V. CONCLUSION AND FUTURE WORK

This paper proposed an IoT-based vehicle localization

method in GNSS-denied environments. In this method, the

HSV color model was used to identify the LED lights of

ubiquitously deployed IoT devices termed smart studs, thereby

obtaining vehicle’s positions by vision positioning. Subse-

quently, the UKF was employed to fuse vision positioning

result with INS navigation information. We compared the

localization performance of the proposed method with the

GPS/INS. Experimental results demonstrated that the proposed

method in this paper achieves higher localization accuracy,

which shows the potential of the IoT-based localization method

to function satisfactorily without relying on GNSS even for a

long time. Additionally, the performance of UKF and EKF

in fusing vision positioning with INS information were also

compared and the results indicated that UKF outperforms EKF

in terms of positioning accuracy.

However, the method proposed in this paper also has its

limitations. To better utilize the light to identify the IoT

devices, the experiments were conducted at night, which may

result in larger errors in vision measurements. Our future work

will focus on finding superior algorithms to reduce the errors

in vision measurements.
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