
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Asynchronous Data Fusion With Randomly Delayed
Measurements for Lane-Level Vehicle Tracking

in Tunnel Environment
Guoqiang Mao , Fellow, IEEE, Tianxuan Fu , Xiaojiang Ren , Member, IEEE,

Keyin Wang , Graduate Student Member, IEEE, Zhaozhong Zhang,
Zhong Wu, and Dahai Xu

Abstract— Sensor fusion plays an increasingly important role
in real-time traffic perception using roadside sensing devices
because the use of single type of sensors often fail to deliver
satisfactory performance in certain harsh environment. This
paper investigates asynchronous data fusion for lane-level vehicle
tracking with randomly delayed measurements and inaccurate
detections from millimeter wave (MMW) radars and magnetic
sensors in tunnels, where vehicle tracking with single type of
sensors can not meet the requirements of reliable and accurate
lane-level tracking due to inaccurate radar detections at far dis-
tances, noisy radar detections in tunnel environment, and missed
or false vehicle detections by magnetic sensors. A multisensor
data association algorithm is first designed to assign the mea-
surements of MMW radar and magnetic sensors to a particular
vehicle. A multi-lane estimation model is then developed, which
employs Bayesian weight mixture filtering to fuse MMW radar
and magnetic sensor measurements and to estimate the lane in
which a vehicle is located. Finally, the proposed algorithm is
implemented in a real environment - the Xianfengding Tunnel
located in Jiangxi Province, China. Experiments are conducted to
validate the accuracy of the proposed method using real data. The
proposed method and the collected data are further integrated
to establish a real-time digital twin system aimed at supporting
advanced traffic management. The fusion results and the real
radar measurement dataset of the tunnel are made available at
https://github.com/futianxuan/data.

Index Terms— Asynchronous data fusion, roadside sensor,
MMW radar, magnetic sensor, lane-level vehicle tracking.

I. INTRODUCTION

ROADSIDE perception is important for establishing a
traffic digital twin system supporting advanced traffic
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management and fascilitating the future mass deployment of
Connected Automated Vehicles (CAVs) via road-vehicle col-
laborations [1], [2], [3], [4], [5]. Roadside perception systems
support advanced traffic management by providing real-
time data for traffic flow optimization and vehicle tracking.
Continuous monitoring and relaying of traffic conditions to
management centers facilitate smoother traffic movements and
improve overall road traffic safety. Sensors strategically placed
along the roadside detect vehicles in real-time and promptly
transmit the detection results to CAVs with short latency
via vehicle-to-infrastructure (V2I) communications [1], [6].
Roadside perception can complement the CAVs’ on-board per-
ception, providing a more comprehensive field of view, fewer
occluded objects, and more accurate perception than on-board
sensing alone, especially in complicated scenarios, beyond-
line-of-sight environment, harsh weather and poor lighting
conditions [7]. These roadside sensors can further alleviate
the sensing requirements of CAVs’ on-board sensors, thereby
reducing the cost of CAVs and making them more affordable.
The development of cooperative vehicle–infrastructure sys-
tems also requires high-quality perception data from roadside
sensors to ensure safe and efficient traffic operation [8].
Therefore, there is an urgent need to effectively utilize existing
roadside sensing devices or deploy new sensors to enhance the
accuracy of roadside perception.

Sensing methods that rely on the single type of sensors to
obtain target motion information tend to produce incomplete
and inaccurate data in dynamic and complex environment [9].
Many traffic monitoring techniques using roadside sensors
have been introduced and studied [10], [11], [12]. As the
most commonly used roadside sensor, cameras primarily rely
on artificial intelligence-driven object detection algorithms
for perception. Cameras can obtain rich information from
images, but the shortcomings of video-based detection are also
obvious. Poor illumination conditions at night or in tunnels
and local feature occlusion significantly affect the detection
accuracy and the continuity of vehicle trajectories [12]. LiDAR
is another popularly used sensor. It has a greater detection
distance than that of a camera, and its perception informa-
tion is more comprehensive [13]. However, LiDAR requires
significant computing power and storage capacity to process
the large amount of point cloud data being produced. Its
detection results are susceptible to interference from airborne
particles [14], and the price of LiDAR is generally very high.
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MMW radar is highly sensitive to object’s velocity and has
been extensively used in practical applications, which provides
a cost-effective alternative to LiDAR [4]. The MMW radar
is almost unaffected by environmental factors and is robust
for the detection of partially occluded objects. However, the
MMW radar detection range is limited, generally not more
than 300 m, and larger vehicles close to the radar are prone
to being detected as two or more objects [15]. Additionally,
the lateral detection accuracy of MMW radar will decrease
significantly as the detection distance increases. In some harsh
environment such as a tunnel, MMW radar detection is also
prone to multi-path interference and noise. A critical challenge
of roadside perception is therefore the optimum trade-off
between cost and accuracy. In this paper, we focus on the
cost-effective and accurate roadside perception using a fusion
of MMW radars and magnetic sensors.

Magnetic sensors have been extensively used for road
traffic detection [2], [16], [17], [18], [19]. In our previous
works, we embed magnetic sensors into a new type of
Internet of Things (IoT) device [20]. Specifically, we for
the first time report on the design of small and powerful,
ubiquitously deployed, solar-powered, road-embedded plug-
and-play IoT devices that can be integrated with multiple
sensors such as temperature, humidity, light, vibration and
magnetic sensors, LED lights, termed smart studs [1]. The
main detection information provided by a smart stud with
a magnetic sensor includes the measurement timestamps of
passing vehicles and the deployment location of the magnetic
sensor. Furthermore, as magnetic sensors can only detect
close-by vehicles, the event that a vehicle is detected by a
magnetic sensor also suggests that the vehicle is in a lane
adjacent to the magnetic sensor. Hence magnetic sensors can
provide lane information of a vehicle. Armed with sophisti-
cated data association and tracking algorithms, collectively,
smart studs with magnetic sensors are strategically deployed
along the lane boundary lines to achieve the perception of
vehicle lane-level information, including position, speed, and
vehicle type [20]. Magnetic sensors have the advantages of
being robust to weather changes and are unaffected by multi-
path interference, which complement MMW radars, especially
in tunnel environment. However, as the local magnetic field
generated by a target attenuates quickly with the propagation
distance, magnetic sensors are generally only capable of
lane-level detection - they cannot detect targets too far away.
On the other hand, MMW-based detection is generally more
accurate than magnetic sensors but suffers from occlusion and
multi-path interference, which often causes "ghost" detection
in tunnel environment, and that the radial detection accuracy
degrades quickly with an increase in detection distance. The
complementary nature of MMW radar and magnetic sensors,
especially in tunnel environment, motivates us to create a
robust detection system fusing the measurements of both
sensors.

Multi-sensor fusion (MSF) methods for asynchronous sen-
sors are typically categorized into centralized and distributed
strategies. Centralized fusion involves transmitting measure-
ment data from different sensors to a fusion center for
processing [21]. Centralized fusion, particularly measurement

augmentation techniques based on the centralized Kalman
filter [22], is considered optimal, but it requires substan-
tial computational resources due to high-dimensional matrix
operations. Therefore, a credibility measure was proposed
in [23], which is combined with KF and used to determine
whether the delayed measurement is normal or faulty. Besides,
reference [24] proposed using least-squares estimation to align
measurements between sensors, assuming a constant velocity
(CV) model. However, deviations from this assumption can
result in model mismatches. To enhance robustness against
model uncertainties, an adaptive Kalman filter (AKF) was
proposed in [9] and [25], which dynamically adjusts the
Kalman gain based on sensor measurement quality, thereby
compensating for measurement noise errors. In contrast, dis-
tributed fusion involves individual sensors generating local
state estimates from their own measurements and transmitting
them to the fusion center, which then combines these estimates
to produce a globally optimal state estimate according to
predefined fusion criteria [26], making it preferable when
communication resources are limited [27]. The asynchronous
information fusion (AIF) problem for a camera and radar in
an intelligent driving system is addressed in [28], where a
matrix-weighted fusion algorithm is used to offer a wide detec-
tion range and provide reliable fused estimates. Furthermore,
a distributed covariance intersection (CI) fusion method was
proposed in [29] to fuse estimates in a distributed manner.

Timestamped data from heterogeneous sensors are often
asynchronous in nature. Therefore, asynchronous data fusion
becomes an important research issue in roadside traffic percep-
tion. The basic goal of multi-source data fusion is to obtain
more diverse information, hence more robust estimation, than
any single type of sensor data [8]. State estimation is a key
part of data fusion, which makes full use of prior infor-
mation and observation information to timely determine the
unknown state (such as position, speed, etc.) of the dynamic
targets. Many existing methods are designed assuming that
all sensors have uniform sampling intervals [30], [31]. For
integrated systems with heterogeneous sensor and non-uniform
sampling periods, this assumption may be too optimistic [22].
On one hand, many estimation systems employ a periodic
estimation and update mechanism, where estimation tasks are
executed periodically [32]. On the other hand, in an event-
triggered estimation system, the execution of the estimation
task is triggered by specific events such as the arrival of new
measurements etc., taking into account the communication
and computing resource constraints [7]. This usually leads to
aperiodic execution of the estimation task. Sampling and esti-
mation may therefore be executed asynchronously [33], which
adds difficulty to the design of the estimator. Moreover, due
to communication and computing limitations, potential sensor
failures and aperiodic execution of the estimation task, there
may be multiple measurements arriving within an estimation
time interval [34]. Accordingly, a challenging problem arises
in multi-source data fusion as to how to make full use the
multiple measurements within an estimation interval to design
an optimal estimator. A straightforward approach is to utilize
only the most recent measurement and discard the others. This
approach is however inefficient as much useful information is
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lost. For such asynchronous, randomly delayed measurements
(due to unreliable and limited communication resources) and
aperiodic estimation task execution, data fusion becomes more
challenging.

Motivated by the above discussions, in this paper, we con-
sider asynchronous data fusion containing aperiodic and
delayed measurements that may temper the performance of
vehicle tracking, leading to false lane estimation for lane-level
tracking in tunnel. An aperiodic linear estimator is developed
based on the backward model [35] to address the challenge
of asynchronous fusion with randomly delayed measure-
ments. Furthermore, an accurate and effective lane estimation
algorithm based on Bayesian weight mixture is proposed
that fully utilizes the complementary advantages of magnetic
sensors and MMW radar to determine the lane in which a
vehicle is located, especially when measurements from MMW
radars and magnetic sensors are inaccurate or missing. More-
over, the above fusion estimator with asynchronous sensors
is constructed based on matching the MMW radar and mag-
netic sensor measurements to the vehicles, achieved through
multisensor data association using Hungarian and auction
algorithms respectively. To the best of our knowledge, this
is the first work that takes delayed, aperiodic and inaccurate
measurements into consideration when asynchronously fusing
MMW radar and magnetic sensors for accurate lane-level
vehicle tracking in a multiple-lane tunnel scenario. Our results
shed insight into the design of an asynchronous data fusion
algorithm for accurate and robust lane-level vehicle tracking.
The vehicle tracking algorithm that fuses MMW radar and
magnetic sensors is implemented in a real tunnel environment
and forms the core of a traffic digital twin system.

The novelty and major contributions of this paper are
summarized as follows:

1) An asynchronous data fusion algorithm is developed
for accurate lane-level vehicle tracking in tunnel envi-
ronment fusing randomly delayed and heterogeneous
measurements from MMW radars and magnetic sen-
sors. A backward model and a finite-length buffer
are employed to address the issue of asynchronous
fusion with randomly delayed measurements. Mean-
while, a multisensor association algorithm is designed to
match the measurements of MMW radars and magnetic
sensors with vehicles.

2) Considering that the lateral detection accuracy of MMW
radar will deteriorate as the detection distance increases,
and missed or false vehicle detections of magnetic
sensors, a method based on Bayesian weight mixture
of MMW radar and magnetic sensor measurements is
proposed to estimate the lane where the vehicle is
located and achieve accurate lane-level vehicle tracking.

3) The proposed method is validated and evaluated using
measurements from the Xianfengding Tunnel and is
applied to establish a tunnel traffic digital twin sys-
tem. The feasibility and effectiveness of our approach
are demonstrated through comparisons with vehicle
information captured by actual video. Furthermore, the
performance of the algorithm is analyzed using both real
measurements and simulation data.

Fig. 1. A schematic diagram of the deployment of magnetic sensors and
MMW radars in a three-lane tunnel.

The rest of this article is organized as follows. In Section II,
the problem is formulated. Section III presents an optimal
state estimation algorithm. Section IV provides an accurate
lateral lane-level estimate of the lane in which the vehicle
is located. In Section V, the performance of the algorithm is
analyzed through simulation and implementation in real tunnel
scenarios. Section VI draws the conclusions.

II. PROBLEM FORMULATION

The schematic diagram and deployment of the MMW radars
and magnetic sensors in tunnel are illustrated in Fig. 1. A one-
way three-lane tunnel is considered, which is typical in China.
The proposed technique can however be readily extended to
a tunnel with fewer or more lanes. Each lane has a width
L = 3.75 m, and is numbered � = {1, 2, 3} from right to
left, in the vehicle’s driving direction. The lane boundary lines
are numbered as {0, 1, 2, 3}, denoted by O = {0, 1, 2, 3},
as shown in Fig. 1. We define the origin as the midpoint of
the first magnetic sensor on the rightmost lane line in the
driving direction. The x-axis aligns with the center line of
the rightmost lane boundary line, while the y-axis is locally
perpendicular to the x-axis and points towards the direction
of the leftmost lane. In this paper, a curvilinear coordinate
system [36] is adopted where the x-axis may be a curve.
The curvilinear coordinate system helps to maximally utilize
the knowledge that vehicles in most cases drive inside a
lane, which can greatly simplify the estimation problem. The
conversion from the curvilinear coordinate system to a global
coordinate system can be readily done [37].

Magnetic sensors are positioned along the lane boundary
lines at equal distance intervals of La (La = 15 m) on both
sides of the roadway, i.e., on the lane boundary lines 0 and
3 only. Let b0, j and b3, j represent the j-th magnetic sensors
positioned on lane boundary lines 0 and 3, respectively. There
are no magnetic sensors deployed along the lane boundary
lines of the middle lane because of the difficulty to supply
electricity to smart studs installed near the middle lane and
that solar energy is unavailable in tunnel environment. MMW
radars are deployed at equal distance intervals of Lb (Lb =

150 m) along the tunnel wall adjacent to Lane 1 and at a height
of 4.5 meters.

Measurements collected by the MMW radar are presented
in Table I. Note that x and y are the positions in portrait and
lateral directions, respectively, vx and vy are the velocities
in portrait and lateral directions, respectively, in the radar’s
local coordinate system. The MMW radar data mainly con-
tain timestamped vehicle position and velocity information.
Measurements collected by the magnetic sensor are presented
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Fig. 2. An illustration of the different detection ranges of MMW radars and
magnetic sensors.

TABLE I
COLLECTED DATA FROM THE MMW RADAR

TABLE II
COLLECTED DATA FROM MAGNETIC SENSOR

in Table II. The magnetic sensor data contain the measure-
ment timestamp and the location of the magnetic sensor in
the aforementioned curvilinear coordinate system. Magnetic
sensor measurement is triggered by the passing vehicle. Let
e j

0,k and e j
3,k represent the vehicle detection events of magnetic

sensors b0, j and b3, j at time tk respectively where e j
0,k =

1 (e j
3,k = 1) means successful detection and e j

0,k = 0
(e j

3,k = 0) means no detection. As mentioned earlier, magnetic
sensors can only detect close-by vehicles. Therefore, e j

0,k = 1
(e j

3,k = 1) also conveys the information that with a high
chance, the vehicle is located in lane 1 (lane 3). It is worth
mentioning that there are also exceptions in the detection of
magnetic sensors. For example, a large vehicle (hence with
more ferromagnetic material) driving in the middle lane may
also trigger the detection of a magnetic sensor located in lane
line 0 (see Fig. 1). This situation must be considered in the
estimation of vehicle lane. When a vehicle passes the magnetic
sensors, measurement timestamps, the lateral positions and
lane line information of magnetic sensors being triggered are
transmitted to the fusion center via a low-rate wireless LoRA
transmission, a wireless transmission technique designed for
IoT applications, at a non-periodic sampling rate. MMW radar
detects the position and speed of the vehicle at a periodic
sampling rate. Due to the large amount of data produced
by MMW radars, MMW radars are connected to the fusion
center via optical fibers. Hence, the data from the MMW
radars and the magnetic sensors arrive at the fusion center
with vastly different delays and loss rate. The fusion center
conduct the vehicle state estimation using MMW radar and
magnetic sensor data every T (T = 0.1 s) seconds.

As the environment under consideration is a highway or a
tunnel, a constant-velocity vehicle motion model is employed
to capture the kinematic relationship during a tracking process.
A more intricate model, such as a constant acceleration model,
has been tried but does not necessarily increase the vehicle
tracking accuracy. Specifically, we consider a class of discrete
time-varying linear system that evolve from time tk−1 to time
tk following a linear state space model:

x(k) = F(k, k − 1)x(k − 1) + ω(k − 1) (1)

where the vehicle state is represented as x(k) =

[px (k), py(k), vx (k), vy(k)]T , px (k) and py(k) are the posi-
tions in portrait and lateral directions, respectively, vx (k) and
vy(k) are the velocities. The system noise ω(k −1) = [wx (k −

1), wy(k − 1), wvx (k − 1), wvy (k − 1)]T is a zero-mean white
Gaussian noise with a known covariance matrix Q. F(k, k−1)

is the system transition matrix to tk from tk−1.

F(k, k − 1) =


1 0 1tk 0
0 1 0 1tk
0 0 1 0
0 0 0 1

 (2)

where 1tk = tk − tk−1. Initial vehicle motion information is
estimated separately from the MMW radars and magnetic sen-
sors. Note that vehicle information is asynchronously obtained
from the MMW radars and magnetic sensors. The MMW
radar operates at a constant sampling rate, while the magnetic
sensor employs an event-triggered mechanism in which a new
measurement is triggered by the detection of a passing vehicle.
The measurement equation of magnetic sensors and MMW
radars is given by

zi (k) = H i (k)x(k) + vi (k), i ∈ {r, b} (3)

where zr (k) = [zx (k), zy(k), zvx (k), zvy (k)]T and zb(k) =

[zx (k)] are measurements of MMW radar and magnetic sen-
sors, respectively. Parameter H i (k) is a known measurement
matrix, H r (k) = diag[1, 1, 1, 1], Hb(k) = [1, 0, 0, 0], vi (k) is
an additive noise, which is a zero-mean white Gaussian noise
with a known covariance matrix Ri (k). It is assumed that the
MMW radar measurement noise and magnetic sensor noise are
independent, and the measurement noise vi (k) is uncorrelated
with process noise ω(k).

Communication delays and measurement losses are almost
inevitable in a networked environment and should be con-
sidered in the filter design. MMW radars are connected to
a fiber-optic transmission system whereas magnetic sensors
transmit their data through wireless and low datarate LoRA
connections designed specifically for IoT applications. There-
fore, transmission delays of magnetic sensors generally are
much larger than MMW radar measurements. The MMW radar
sampling time is set to be the same as the state update time.
The time instant of the j − th measurement from sensor i ,
i = {r, b}, received at the fusion center during the interval
(tk, tk+1] are denoted as t i, j

k , j = 1, 2, . . . , n, and satisfy
tk < t i,1

k < t i,2
k < · · · < t i,n

k ≤ tk+1 = tk + T . Due
to aperiodic sampling and network-induced random delays,
multiple measurements may be available, or no newly arrived
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Fig. 3. An illustration of the estimation system with lost and delayed mea-
surements. Parameter tk represents the estimator time, tr

k (tb
k ) is the MMW

radar measurement (magnetic sensor measurement) time and tr,1
k−1(tb,2

k−1) is
the time the MMW radar measurement (magnetic sensor measurement) is
received at the estimator or the fusion center during (tk−1, tk ].

measurement may occur during an estimation interval. Tak-
ing the estimation interval (tk−1, tk] in Fig. 3 for example,
where MMW radar measurement zr (tr

k ) and magnetic sensor
measurement zb(tb

k−2) are received during the state update
interval (tk−1, tk]. Due to the very small transmission delays
of MMW radar measurements, it is often the case that MMW
radar measurements are generated and received during the
same interval (tk−1, tk] whereas magnetic sensor measure-
ment zb(tb

k−2) generated during (tk−3, tk−2] is received during
(tk−1, tk]. Due to the wireless low datarate LoRA connections
used for transmitting magnetic sensor data, measurements
from magnetic sensors often suffer from large delays and out-
of-sequence arrivals at the fusion center as shown in Fig. 3.

In addition to the vehicle state vector x(k) =

[px (k), py(k), vx (k), vy(k)]T defined earlier, in this paper,
we augment the state vector x(k) with a further state variable
βk ∈ {1, 2, 3} where [Pr(βk = 1), Pr(βk = 2), Pr(βk = 3)]T

is the probability that the vehicle is located in lane 1, 2 or
3 respectively. Obviously Pr(βk = 1) + Pr(βk = 2) +

Pr(βk = 3) = 1. Apparently, βk has some connection with
the state variable py(k) but the value of βk or Pr(βk) does not
transform directly to the corresponding value of py(k) and the
converse. Furthermore, the addition of a separate state variable
βk makes it easier to fuse the measurements of magnetic
sensors, which can only be used to roughly indicate the
vehicle lane but cannot be directly converted to a continuous
measurement value corresponding to py(k). The update of
Pr(βk+1 = i), i ∈ {1, 2, 3} is done separately using a Bayesian
procedure, described later in Section IV. Without causing
confusion in the expression, we reserve the symbol x(k)

exclusively for [px (k), py(k), vx (k), vy(k)]T and consider the
lane state vector [Pr(βk = 1), Pr(βk = 2), Pr(βk = 3)]

separately.
The different detection ranges of the magnetic sensor and

the MMW radar are illustrated in Fig. 2. In Fig. 2, the black
and white fans represent the detection ranges of the magnetic
sensor and the MMW radar, respectively. As the detection
distance increases, the lateral lane detection resolution of
MMW radar decreases. MMW radar may also suffer from
inaccurate measurements caused by multipath interference in
tunnel environment. On the other hand, magnetic sensors
deployed on both sides of the road can detect vehicles in
the leftmost and rightmost lanes but may miss vehicles in
the middle lane. Note that magnetic sensors and MMW
radars have complementary detection range. By fusing the
measurements of magnetic sensors and MMW radars, a wide

detection range and robust target tracking can be obtained. The
objective of this paper is to design an asynchronous data fusion
method with time-varying delays and inaccurate measure-
ments to achieve accurate lane-level vehicle tracking through
advantageous combination of MMW radar and magnetic
sensors.

III. DESIGN OF THE LINEAR ESTIMATORS

The following section describes the proposed method for
data association and state estimation, which consists of three
key components: state prediction, measurement-track asso-
ciation, and vehicle state update. First, state prediction is
performed using (4) and (5) in Section III-A. Next, the
measurement-track association process associates the MMW
radar measurements with the predicted state using (6) to (8),
while the magnetic sensor measurements are associated with
the predicted state through (9) to (17). Finally, the vehicle
state is updated by associated the MMW radar measurements
using (21) to (25). The vehicle’s longitudinal position is
updated separately using the magnetic sensor measurements,
as detailed in Section III-C2.

A. State Prediction

As a vehicle approaches a tunnel entrance, it is first detected
by a MMW radar. Measurements from a radar are first asso-
ciated with existing active tracks (data association details are
outlined in Section III-B). Measurements that fail to associate
with existing tracks are used to initialize new targets, with
their respective measurements used to initialize the states of
the new targets and form new tracks with unique IDs. The
motion of the vehicle is modeled as (1). The measurements
from the MMW radars and magnetic sensors are fed into the
Kalman estimation process through (3). The state prediction
is as follows:

x(k|k − 1) = F(k, k − 1)x(k − 1|k − 1) (4)

P(k|k − 1) = F(k, k − 1)P(k − 1|k − 1)F(k, k − 1)T

+ Q(k − 1) (5)

where the state transition matrix F(k, k − 1) is given in (2).
The prediction module performs state predictions for all active
tracks and brings the states of all active tracks (or vehicles)
to the same time tk , which is then used for the multisensor
association and track update of the next step.

B. Measurement-Track Association

Considering the algorithm complexity and the limited
computing resources, we design a low computational bur-
den multi-sensor association algorithm by employing a
measurement-to-track association. Measurement-to-track asso-
ciation can be divide into two steps: firstly, determining
whether the measurement is within the association gate thresh-
old; secondly, calculating the distance between the sensor
measurements and the predicted measurement of the track,
and then assigning the measurements to the tracks.
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1) Data Association With MMW Radar: The Mahalanobis
distance is used to measure the distance between a MMW
radar measurement and the state prediction because it accounts
for variable covariances and scale differences. It is particu-
larly suitable for this application because it normalizes the
data, providing a consistent way to measure the similarity
between the observed measurements and the predicted states.
For a MMW radar measurement at time tk , the square of
the Mahalanobis distance between measurement m and the
corresponding prediction of vehicle n can be calculated by
the following:

d2
mn =(zr

m(k) − x̂n(k|k − 1))T Smn(k)−1(zr
m(k) − x̂n(k|k − 1))

(6)

where zr
m(k) is the measurement vector of measurement m

from MMW radar, and x̂n(k|k−1) is the sate prediction vector
of the vehicle n. The measurement covariance is Smn(k):

Smn(k) = H r (k)Pn(k|k − 1)H r (k)T
+ Rr (k) (7)

where Rr (k) is the measurement noise covariance matrix, and
Pn(k|k −1) is the covariance of the state prediction of vehicle
n. The Mahalanobis distance values dmn are recorded in the
form of a matrix Mdis : the rows of the matrix Mdis are MMW
radar measurements and the columns are the vehicles.

Mdis =

{
(d2

mn)c×l , i f d2
mn ≤ G

dmax , i f d2
mn > G

(8)

where subscript c is the number of sensor measurements, l is
the number of tracks (or vehicles), and G is the association
threshold. Only the measurements within the threshold could
be associated. dmax is a large constant, which means the mea-
surement is outside the threshold of the track. Since the square
of the Mahalanobis distance obeys the chi-square distribution
whose degrees of freedom depend on the dimension of the
state vector, the threshold G can be defined according to
the probability table of the chi-square distribution. In this
paper, to realize the association of multiple measurements
and vehicles, the Hungarian algorithm is used for the optimal
assignment due to its efficiency and effectiveness in solving the
assignment problem. It guarantees a globally optimal solution
with a polynomial time complexity, making it suitable for
real-time applications where quick and accurate association
of multiple measurements and tracks is essential [38]. Then,
measurements that are not associated will initialize new tracks
and measurements that are successfully associated will be used
to update the vehicles’ states.

2) Data Association With Magnetic Sensor: As mentioned
in Section II, a magnetic sensor measurement is triggered by
a passing vehicle and reports the measurement timestamp and
the location of the magnetic sensor detecting the vehicle. The
association between a magnetic sensor measurement and a
vehicle is conducted based on the measurement timestamp,
which is elaborated in the following.

Assume that after the estimation time epoch tk , a measure-
ment from a magnetic sensor j is received with a timestamp
tb

j and the x coordinate of the magnetic sensor is denoted by
xb

j . Here we temporarily ignore the impact of the y coordinate

and the impact of the vehicle lane, i.e., a vehicle is located
in a lane not necessarily adjacent to the magnetic sensor j .
We shall explain shortly later how to deal with the impact of
the vehicle lane.

Define σn,x and σn,v as the standard deviations of the
position and velocity estimates of vehicle n in the x direction,
respectively:

σn,x =
√

Pk|k(1, 1) (9)

σn,v =
√

Pk|k(3, 3) (10)

where Pk|k is the process covariance matrix of vehicle n at
time tk .

The estimated time for a vehicle n to arrive at the magnetic
sensor j is

t̂ j,n = tk +
xb

j − p̂x,n

v̂x,n
(11)

where p̂x,n and v̂x,n are the estimated x coordinate and
estimated speed along the x axis of vehicle n at time tk , respec-
tively. Without causing confusion and for ease of expression,
we drop the subscript k from p̂x,n and v̂x,n and assume that
the states of all active vehicles have been brought up to time
tk . Obviously, Equation (11) is an approximation only. Use
t j,n , px,n and vx,n to denote the true values for t̂ j,n , p̂x,n and
v̂x,n respectively. It can be shown that

xb
j = px,n +

∫ t j,n
tk

vx,n(t)dt

t j,n − tk

(
t j.n − tk

)
= px,n + v̄ j,n

(
t j,n − tk

)
(12)

where vx,n(t) is the instantaneous speed at time t and v̄ j,n ≜∫ t j,n
tk

vx,n(t)dt
t j,n−tk

is the time-averaged speed during [tk, t j,n). It fol-
lows from (12) that a more accurate approximation for t̂ j,n
can be obtained from a first-order Taylor expansion:

t̂ j,n ≈ tk +
xb

j − p̂x,n

v̄ j,n

≈ tk +
xb

j − p̂x,n

v̂x,n
−

xb
j − p̂x,n(
v̂x,n

)2 △vx,n (13)

where △vx,n = v̄ j,n − v̂x,n . It can be further shown that

V ar

(
xb

j − p̂x,n(
v̂x,n

)2 △vx,n

)
≈

(σn,x )
2
+ (1x j,n)2

(v̂x,n)4 (σn,v)
2 (14)

where 1x j,n = xb
j − p̂x,n . Let

σ j,n =

√
(σ j,x )2 + (1x j,n)2

(v̂x,n)2 σn,v (15)

Based on the above analysis, we are now ready to present
the data association algorithm for magnetic sensor measure-
ment. As introduced before, first an association gate is formed
to filter out vehicles that apparently cannot be associated with
a measurement. Then, for the multiple-measurement-multiple-
vehicle association problem, an auction algorithm is employed
to obtain the optimum association due to its efficiency and
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robustness, especially when dealing with large numbers of
measurements and vehicles.

During the track initialization stage, the estimates of vehicle
states may contain large errors. Therefore, it is more prudent
to use the maximum and the minimum speed to form the asso-
ciation gate: [tk +

1x j,n
vmax

−εt, j , t̂ j +
1x j,n
vmin

+εt, j ], where vmax and
vmin are respectively the maximum and the minimum speeds
in a particular environment which can often be empirically
determined, e.g., from the speed limit. The term εt, j accounts
for the difference between the local time of smart stud j and
the true time. Due to synchronization error, the smart studs
may have a time drift of up to 50 ms. When the vehicle state
estimates have converged, a much reduced associate gate is
used: [tk +

1x j,n
v̂x,n

− Knσ j,n − εt, j , tk +
1x j,n
v̂x,n

+ Knσ j,n + εt, j ]

where Kn is a value within [2, 10] and is different for each
vehicle. Parameter Kn is first assigned a larger value, e.g., 10.
Each successful association with vehicle n allows us to reduce
Kn a bit (normally by multiplying Kn by a constant smaller
than 1, e.g., 0.9) till the minimum value of 2 is reached. If a
vehicle n is unable to associate with any measurement, then
Kn is multiplied by a constant larger than 1, e.g., 2, until the
maximum value of 10 is reached. Such a procedure allows us
to just filter in the “right” vehicles to associate with a particular
measurement.

If only one vehicle “falls” into the association threshold,
that vehicle may be directly assigned to the measurement.
However, it is often the case that multiple vehicles may be
possibly associated with multiple measurements. In this case,
the next step is invoked to resolve the optimum assignment.

For ease of expression, we use t j,n,min and t j,n,max to
denote the aforementioned minimum and maximum associ-
ation thresholds. Let t j be the measurement timestamp from
magnetic sensor j and let t̃ j,n = tk +

1x j,n
v̂x,n

be the predicted
time for vehicle n to arrive at sensor j using the state estimates
of vehicle n. The gain of associating measurement from sensor
j to vehicle n is given by:

a j,n =
max{(t j − t j,n,min)2, (t j − t j,n,max )

2
} − (t̃ j,n − t j )

2

σ j,n

(16)

The above gain optimally combines the distances from the
association gate boundary and the distance between the pre-
dicted arrival time and the actual measurement timestamp,
weighed by the uncertainty in vehicle state estimates captured
by σ j,n .

The optimum data association problem can then be trans-
formed into the following maximization problem and solved
using the auction algorithm [39]:

max
∑
j,n

I j,na j,n (17)

Subject to I j,n ∈ {0, 1} (18)∑
j

I j,n ≤ 1,
∑

j

I j,n = 1, when M ≤ N , ∀n

(19)

∑
n

I j,n ≤ 1,
∑

i

I j,n = 1, when N > M, ∀ j

(20)

where M , N denote the number of measurements and the
number of vehicles in the association problem, respectively.
Note that only the subset of measurements and the subset
of vehicles whose association cannot be resolved using the
associate gates (or alternatively, the respective association
gates mutually overlap) need to be considered and resolved
using the aforementioned maximization problem.

Let us now consider how to incorporate the impact of
vehicle lanes in the above data association problem. Consider
for example a measurement from sensor b0, j (see Fig. 1 for an
illustration) is received. With a high chance, the measurement
may be triggered by a vehicle in Lane 1. However, the situation
that the measurement is triggered by a vehicle in Lane 2 or
3 cannot be entirely ruled out because maybe there is a large
vehicle driving in Lane 2 or 3. Therefore, with a smaller
chance, the measurement may be triggered by a vehicle in
Lane 2, and with an even smaller chance, the measurement
may be triggered by a vehicle in Lane 3. To capture this effect,
a weight is multiplied to the association gain a j,n in (16). For
a vehicle driving in a lane adjacent to the magnetic sensor
generating the measurement, a weight of 1 is used. For a
vehicle in a lane further away, a weight less than 1 is used.

C. Vehicle State Update

After the data association problem is resolved, we then
consider the update of the vehicle state x(k) in this subsection
and the update of the vehicle lane estimate βk in Section IV.

1) Sequential State Update: After a new measurement is
associated with a track, the state update is conducted using (1)
and (3) following the standard Kalman update procedure,
which is included here for completeness.

x̂(k|k − 1) = F(k, k − 1)x̂(k − 1|k − 1) (21)

P(k|k − 1) = F(k, k − 1)P(k − 1|k − 1)F(k, k − 1)T

+ Q(k − 1) (22)

K (k) = P(k|k − 1)H i (k)T (H i (k)P(k|k − 1)H i (k)T

+ Ri (k))−1 (23)

x̂(k|k) = x̂(k|k − 1) + K (k)(zi (k) − H i (k)x̂(k|k − 1))

(24)

P(k|k) = P(k|k − 1) − K (k)H i (k)P(k|k − 1) (25)

where i ∈ {r, b}.
2) Out-of-Sequence Update of Randomly Delayed Magnetic

Sensor Measurements: As introduced before, magnetic sensor
measurements are transmitted to the fusion center via low
data rate LoRA connections and the transmission may incur
large delays, e.g., 1-2 s. In comparison, the transmission
delays of MMV radar measurements are almost negligible (in
the order of milliseconds). Therefore, it happens quite often
that a magnetic sensor measurement zb(κ) with measurement
timestamp tκ arrives after the state has been updated at tk ,
where tκ < tk . The current state estimate x̂(k) needs to
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be updated to incorporate this delayed and out-of-sequence
magnetic sensor measurement zb(κ).

The incorporation of the delayed and out-of-sequence mea-
surement is often done using the backward model and involves
the following steps: 1) retrodiction of the state is performed
from tk to the earlier delayed time tκ ; 2) the corresponding
covariance and filter gain are then computed to update the
current state estimate with the delayed measurement zb(κ)

from the magnetic sensor; 3) the state estimate and covariance
at tk are updated [35]. However, due to modelling error
in the target motion model and the uncertain measurement
delay, the retrodicted value x̂(κ|k) from tk to tκ may incur
a large error, especially when tκ is much smaller than tk .
Nowadays, computer storage becomes very cheap and there-
fore we find it more convinent to store the state estimate
and the measurements for a certain amount time where this
time threshold, denoted by td,max , is set considering LoRA
transmission delays. Then, when the measurement zb(κ) is
received, if tκ < tk − td,max , the measurement is discarded
as the measurement information may be stale; otherwise, we
simply retrieve the state estimate closest to and earlier than
tκ . After analyzing the random LoRA tranmission delays of
magnetic sensor measurements, the time threshold td,max is
set to 2 s where ∼ 95% of magnetic sensor measurements
arrive with a delay smaller than or equal to 2 s. Let tkhis be
the time instant cloest to and earlier than tκ when the state was
updated. The state at time instant tkhis is retrieved. Then all
measurements within

[
tkhis , tk

]
, including zb(κ), are associated

to vehicles and used to update the vehicle states sequantially
according to their measurement timestamps following the
precedure outline earlier.

IV. VEHICLE LANE ESTIMATION

The proposed method for vehicle lane estimation consists of
three main steps. First, Bayesian prediction is used to estimate
the lane state, as described in (26). Next, lateral measurements
from MMW radar and magnetic sensors are combined through
a weighted fusion of their probability density functions, pro-
ducing a fused likelihood function. This fusion process is
detailed in (31) to (37) in Section IV-A. Finally, the vehicle’s
lane is estimated by applying Bayesian updating through (29).

In this section, we consider the vehicle lane estimate.
As introduced before, this is done separately from the update
of the vehicle state x(k). The vehicle lane estimate is con-
ducted following a Bayesian procedure and is updated every
T seconds where T = 0.1 s.

Denote by Z0:k the set of all measurements received till time
tk and by zk the more recently received measurement. In this
paper we use the symbols zk and z(k) interchangeably. Denote
by Pr(βk = i |Z0:k), i ∈ {1, 2, 3} the lane estimate given the
measurement set Z0:k . The lane state prediction can be done
using the following equation:Pr(βk+1 = 1|Z0:k)

Pr(βk+1 = 2|Z0:k)

Pr(βk+1 = 3|Z0:k)

 = Ak+1|k

Pr(βk = 1|Z0:k)

Pr(βk = 2|Z0:k)

Pr(βk = 3|Z0:k)

 (26)

where the (i, j) term of the matrix Ak+1|k represents the
probability that the vehicle will change from lane i to lane

j during time T :

Ak+1|k =

1 − ϵ ϵ 0
ϵ 1 − 2ϵ ϵ

0 ϵ 1 − ϵ

 (27)

Here, ε is a small positive constant and is empirically deter-
mined based on the probability statistics of actual road vehicles
changing lanes. In this paper we set ε = 0.1. The diagonal
elements represent the probabilities of vehicles in lane 1, 2,
and 3 staying in their current lanes, respectively.

Now considering a measurement zk+1 is received and
assuming that zk+1 and Z0:k are conditionally independent,
it can be readily shown that

Pr (βk+1 = i |Z0:k+1) = Pr (βk+1 = i |Z0:k)
Pr (βk+1 = i |zk+1)

Pr (βk+1 = i)
(28)

where Pr (βk+1 = i) is the prior probability that a randomly
chosen vehicle is in Lane i . Pr (βk+1 = i) can be readily
obtained from prior measurement but in practice, we find
it suffice to use the approximation that Pr (βk+1 = 1) =

Pr (βk+1 = 2) = Pr (βk+1 = 3) as any inaccuracy in the
knowledge of Pr (βk+1 = i) can be compensated by the mea-
surement, i.e., the term Pr (βk+1 = i |zk+1). From (28) and the
above discussion, we can get the measurement update equation
for Pr(βk = i |Z0:k), i ∈ {1, 2, 3} as follows:

Pr (βk+1 = i |Z0:k+1)=C Pr (βk+1 = i |Z0:k) Pr (βk+1 = i |zk+1)

(29)

where C is a normalization constant such that∑
i∈{1,2,3}

Pr (βk+1 = i |Z0:k+1) = 1.

A. Measurement Updates for Lane Estimation

Given (29), it remains to determine the value of
Pr (βk+1 = i |zk+1), i.e., how the measurements from the
MMW radar and the magnetic sensor can be used to estimate
the vehicle lane. We separately consider the cases that 1) there
is a MMW radar measurement within T ; 2) there is a magnetic
sensor measurement within T and 3) there are both radar and
magnetic sensor measurements within T . In the last case, an
optimum fusion of MMW radar measurement and magnetic
sensor measurement is performed.

In the case of a magnetic sensor measurement, assume that
a sensor b0, j reports a vehicle detection event. Denote that
event by e0, j where e0, j = 1 means vehicle detection and
e0, j = 0 means no detection. The event that e0, j = 1 means
that with a high probability, there is a vehicle in Lane 1, with a
small probability, there is a vehicle in Lane 2 and with an even
smaller probability, there is a vehicle in Lane 3. Therefore the
measurement e0, j = 1 conveys the information that

Pr
(
βk+1 = 1|e0, j = 1

)
= c1

Pr
(
βk+1 = 2|e0, j = 1

)
= c2

Pr
(
βk+1 = 3|e0, j = 1

)
= c3


where c1, c2, c3 are constants such that c1 + c2 + c3 = 1 and
c3 < c2 < c1. The values of c1, c2 and c3 are empirically
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chosen based on prior measurements. Other situations such
as when sensor b3, j reports a measurement can be handled
analogously. Note that e0, j = 1 suggests that with a high
probability, the vehicle is located in Lane 1. On the other
hand, no detection, i.e., e0, j = 0, is also a strong indicator
that with a high probability, the vehicle is not in Lane 1.

Now we move on to consider the MMW radar measurement.
A MMW radar measures the range r and the bearing angle θ

to the vehicle. Many MMW radar manufacturers often convert
the MMW radar measurements into a Cartesian coordinate
system before output the measurement values in the Cartesian
coordinate system. Let δ and δθ be the standard deviations of
the measurements r and θ , respectively. Using the Polar to
Cartesian coordinate conversion relationship that xr

k = r cos θ

and yr
k = r sin θ , it readily follows that the measurement

covariance matrix for the radar measurements xr
k and yr

k are:[
r2δ2

θ sin2 θ + δ2 cos2 θ (δ2
θ − r2δ2

θ ) sin θ cos θ

(δ2
θ − r2δ2

θ ) sin θ cos θ r2δ2
θ cos2 θ + δ2 sin2 θ

]
(30)

As shown in (30), at a small measurement angles θ , the
measurement error standard deviation in the y-direction can
be approximated by δ2

r = r2δ2
θ , i.e., the measurement error of

the MMW radar in the radial direction approximately increases
linearly with the distance.

It follows from the above discussion that the pdf of the
MMW radar measurement can be approximated by a Gaus-
sian distribution: fr (y) = N (y; yr

k , δr ). The conclusion then
readily follows that:

Pr
(
βk+1 = 1|yr

k+1
)

= Cr

∫ L

0

1
√

2πδr
exp

(
−

1
2

(
y − yr

k+1

δr

)2
)

dy (31)

Pr
(
βk+1 = 2|yr

k+1
)

= Cr

∫ 2L

L

1
√

2πδr
exp

(
−

1
2

(
y − yr

k+1

δr

)2
)

dy (32)

Pr
(
βk+1 = 2|yr

k+1
)

= Cr

∫ 3L

2L

1
√

2πδr
exp

(
−

1
2

(
y − yr

k+1

δr

)2
)

dy (33)

where Cr is a normalization constant.
1) Gaussian Mixing for the Fusion of MMW Radar and

Magnetic Sensor Measurements: Now we consider the case
that there are both radar and magnetic sensor measurements
within T . In this case, an optimum fusion of the MMW
radar and the magnetic sensor measurements is first conducted
before the fused measurement is used to update the lane
estimate. As the pdf of the lane estimate from the magnetic
sensor measurement is discrete while that from the MMW
radar is continuous, they are first transformed into the same
form.

Let ub(1) = L/2, ub(2) = 3L/2, ub(3) = 5L/2 be
respectively the centers of Lane 1, Lane 2 and Lane 3 along the
y axis. The pdf of the lane estimate from the magnetic sensor
measurement can be approximated by the following Gaussian
mixture function:

fb (y) = c1 f1 (y) + c2 f2 (y) + c3 f3 (y) (34)

where fi = N (y; ub(i), L
4 ). The standard deviation of fi is

chosen to be L/4, which implies that with 95% probability,
the corresponding y with pdf fi (y) must fall into the region
of Lane i if Lane i is the estimated lane.

Based on the fr (y) and fb(y) obtained above, an optimum
fusion is obtained through a weighted combination of fr (y)

and fb(y):

ffusion(y) = ωr fr (y) + ωb fb(y) (35)

The optimum weights ωr and ωb are obtained through the
following suboptimal constrainted maximizing problem [40]:

ωsubopt = arg max
w

∑
iϵ{r,b}

ωi DK L
(

fi (y)|| f f usion(y)
)

(36)

where DK L
(

fi (y)|| f f usion(y)
)

is the Kullback-Leibler diver-
gence (KLD) [41] of the two probability density functions
fi (y) and f f usion(y). This optimization approach is used
because the Kullback-Leibler divergence measures the infor-
mation loss when approximating f f usion(y) using the individ-
ual distributions fi (y). The derived weights achieve an optimal
balance, ensuring f f usion(y) effectively integrates essential
characteristics of each. The fusion weight determined and
proof given in APPENDIX A.

For ease of expression, we use zk+1 to denote the fused mea-
surement. Measurement fusion achieves high robustness and
accuracy by reasonably weighting the measurements from dif-
ferent sensors, resulting in more reliable fused measurements.
Even if some sensor measurements contain large errors, the
optimum fusion can still produce credible posterior estimates.
It then follows that

Pr (βk+1 = i |zk+1)

= Cβ

∫ i L

(i−1)L
ffusion(y) dy (37)

where Cβ is a normalization constant.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness and perfor-
mance of the proposed algorithm through both simulations
and real-world deployment. Extensive simulations have been
conducted to assess the algorithm’s efficacy, demonstrating
the superiority of the proposed system. The deployment
of the algorithm in a real tunnel environment further
confirms its accuracy and practical value. The radar mea-
surement data and fusion results are publicly accessible at
https://github.com/futianxuan/data.

A. Experimental Platform and Experiment Setup

The proposed system has been deployed in a commercial
setting to form part of the advanced traffic and tunnel man-
agement system in Xianfengding Tunnel in Jiangxi Province,
China, as shown in Fig 4. The three-lane tunnel, spanning
approximately 1600 meters, is equipped with nine MMW
radars and over 200 magnetic sensors to detect the real-time
position of vehicles. MMW radars are deployed at intervals
of 150 meters along the tunnel wall and magnetic sensors are
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TABLE III
THE SPECIFIC PARAMETERS OF THE PROCESS NOISE

COVARIANCE MATRIX

Fig. 4. The actual deployment plan and deployment photos of MMW radars
and magnetic sensors in Xianfengding Tunnel, Jiangxi Province, China.

deployed at intervals of 15 meters on both sides of the road
lane line. The MMW radars are from Hurys Pty Ltd and with
a model number DTAM D39-V.

The initial covariance matrix is established as P(0) =

diag[0.012, 0.012, 0.052, 0.012
]. The covariance matrix of the

MMW radar measurement noise is primarily determined by
errors in transforming radar measurements from polar coor-
dinates to Cartesian coordinates and is set to Rr (0) =

diag[0.52, 0.72, 0.052, 0.12
]. The covariance of the measure-

ment noise from the magnetic sensor, considering the ranging
error due to timing errors and the geomagnetic measurement
error, is Rb(0) = 25, and the process noise covariance
matrix is Qw(k) = diag[σ 2

x , σ 2
y , σ 2

vx
, σ 2

vy
]. The initial process

noise covariance matrix is determined through actual system
data. These initial values are set following the principles
outlined in [42]. The specific parameters involved are shown
in Table III.

In the actual deployment, it is difficult to obtain ground truth
to gauge the accuracy of the state estimation [43]. Following
common practice in the field, we use the normalized innova-
tion as a metric to measure the performance [44]. For example,
when considering the horizontal position estimate, denoting
the predicted state by p̂x,n(k|k − 1) and the measurement by
zx,n(k) for a vehicle n, we calculate the normalized innovation
of the n-th object over a time window with NT measurements.
It is defined as:

rn =
1

NT

∑
k

(
( p̂x,n(k|k − 1) − zx,n(k))2

σ 2
n,x

) (38)

This value represents the discrepancy between measurement
and prediction. This metric is computed first for an object,
and averaged in a certain time interval T . The normalized
innovation also employs the covariance matrices considering
the predicted position uncertainties, σ 2

n,x denote the variance
of the prediction position of vehicle n in x direction. which
is defined as (9).

Fig. 5. A boxplot of the normalized innovations for the x-coordinate after
fusing measurements from the MMW radar and magnetic sensors for six
randomly chosen vehicles. Both vehicle 1 and vehicle 4, which are in the
middle lane and cannot be detected by the magnetic sensor, exhibit higher
median values than the other vehicles.

B. Experimental Evaluation

Fig. 5 and Table IV present the normalized innovations
for x coordinate after fusion of MMW radar and magnetic
sensor measurements for six randomly chosen vehicles. The
innovations of vehicle 1 and vehicle 4 are larger than those
of other vehicles. The reason is that these two vehicles are in
the middle lane, and they cannot be detected by the magnetic
sensors. Vehicles 3, 5 and 6 are in lane 1 and vehicle 2 is
in lane 3. The estimation of these vehicles in the lanes on
either side of the road is more accurate, as measured by the
normalized innovations, than those in the middle lane. Further-
more, for those vehicles in either side of the road, fusion of
both MMW radar and magnetic sensor measurements shows
better accuracy than those using MMW radar measurements,
while for vehicles in the middle lane, there is no change. The
reason is also quite obvious: those in the middle lane cannot be
detected by magnetic sensors and therefore cannot enjoy the
benefits of data fusion. Therefore Fig. 5 and Table IV allow
us to conclude that data fusion not only improve vehicle state
estimation in the lateral direction, i.e., the y coordinate, but
also improve the estimation accuracy in the radial direction,
i.e., the x coordinate.

Furthermore, we analyze the effectiveness and rationality
of the fusion algorithm using real tunnel scene data. Fig. 6
shows that in the real test, when the vehicle with ID object
53 is driving in lane 1, the radar measurement indicates that
the vehicle is in the middle lane. Fig. 7 displays the posterior
probability of lane estimation for object 53 based solely on
radar measurements. The vehicle is erroneously estimated to
be in lane 2 (middle lane) following the update of the 5th, 12th,
and 13th inaccurate radar measurements. Subsequently, Fig. 8
demonstrates that fusion with magnetic sensor measurements
effectively addresses the issue of incorrect lane estimation
caused by inaccurate radar measurements.

To further evaluate the performance before and after the
fusion of magnetic sensors when radar measurements are
inaccurate, we remove the measurement data of Radar 1 and
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TABLE IV
ROOT MEAN SQUARE OF NORMALIZED INNOVATIONS

Fig. 6. Inaccurate radar measurements of large trucks.

Fig. 7. Lane probability estimates obtained when relying solely on radar
measurements. The vehicle is actually driving in lane 1 but may be erroneously
estimated to be in lane 2. The system output the lane with the highest
probability as the current estimated lane.

Fig. 8. Lane probability estimates obtained by fusing radar and magnetic
sensor measurements when radar measurements are inaccurate. The vehicle
is actually driving in lane 1.

Radar 3 and extend the range of interest for Radar 2 and
Radar 4 to 300 meters by adjusting the measurement shielding
area. This software-based shielding area adjustment ensures
that radar measurements beyond the preset detection region
of interest (ROI) are not received or used. As mentioned

Fig. 9. Tracking performance exhibited by fusion methods in a three-lane
tunnel scenario.

before, the lateral measurement accuracy of MMW radars
decreases sharply with the increase in detection distance.
Therefore, by effectively increasing the measurement range
of MMW radars from 150 meters to 300 meters, it helps to
expose more erroneous measurements of MMW radars and
evaluate the effectiveness of magnetic sensor measurement
in compensating for MMW measurement errors. Rosbag data
recorded every 5-minutes were analyzed. One rosbag packet
was randomly selected from all recorded data to compare and
analyze the target’s trajectory using radar alone and radar-
magnetic sensor fusion. Fig. 9 indicates that a 5-minute data
packet contains 4 vehicles, observed through the camera:
vehicle 14 and vehicle 15 are in lane 1, vehicle 10 is in the
middle lane, and vehicle 0 is in lane 3. The same rosbag packet
data is executed to compare and analyze vehicle trajectories
before and after fusion with magnetic sensors. In Fig. 10, the
comparison of trajectory data about position in the x-direction
and y-direction is shown for the situations of using radars only
and combined magnetic sensors and radars, respectively. The
blue line represents vehicle tracking solely based on radar
output, while the red line represents vehicle tracking using
both radars and magnetic sensors. Specifically, vehicle 14 and
vehicle 15 in lane 1 are erroneously detected as being in
lane 2 by using radar only. However, the vehicle trajectories
accurately track vehicles in lane 1 after fused magnetic sensor.
Based on the vehicle tracking scenario above, it shown that
radar and magnetic sensors have the following advantages:
1) Magnetic sensors help to compensate for the less accurate
radial detection of MMW radars; 2) the fusion helps to
expand the detection range of MMW radars significantly while
maintaining the same level of accuracy.
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TABLE V
PERFORMANCE OF VEHICLE LANE ESTIMATION

Fig. 10. Trajectory comparison between fused radar and magnetic sensor
versus radar-only tracking. The red line represents the combined radar and
magnetic sensor tracking, while the blue line represents radar-only tracking.

To further illustrate the complementary advantages of
MMW radars and magnetic sensors and quantitatively assess
the performance of the proposed algorithm, we record the
actual measurement data of the Xianfengding Tunnel and
analyze the lane estimation performance. The tracking per-
formance of 435 vehicles recorded during for 365 minutes
is summarized in Table V and the ground truth is obtained
through manual counting using a video camera. The proposed
algorithm with data fusion achieves 99.54% accuracy in the
vehicle lane estimation. In contrast, relying solely on radar
measurements delivers a lane estimation accuracy of 77.70%
only. Additionally, Fig. 11 presents the confusion matrix
evaluating lane estimation performance for different sensor
combinations. In Fig. 11(a), where only MMW radar is used,
the lane estimation accuracies for Lane 1, Lane 2, and Lane
3 are 63.38%, 79.86%, and 80.23%, respectively. In contrast,
Fig. 11(b), which incorporates MMW radar and magnetic
sensors, shows a significant accuracy improvement of 35.23%,
20.14%, and 18.63% across Lane 1, Lane 2, and Lane 3,
respectively, highlighting the advantages of sensor fusion for
enhanced vehicle lane estimation. This further confirms the
advantage of fusing MMW radars and magnetic sensors.
In summary, the proposed fusion method offers several notable
advantages: 1) the detection range of MMW radar is signifi-
cantly expanded while maintaining the same lateral detection
accuracy; 2) more reliable and accurate estimation can be
obtained both in the lateral direction and in the radial direction;
3) the system with the fusion of radar and magnetic sensors
is robust to failure or inaccurate measurements of individual
sensors.

Fig. 11. Performance comparison of lane estimation using different sensor
combinations. (a) Confusion matrix for lane estimation using only MMW
radar. (b) Confusion matrix for lane estimation obtained from the combination
of MMW radar and magnetic sensors.

The total computation time is presented in Table VI. The
computing environment was powered by a 11th Gen Intel (R)
Core (TM) i7-11700K with 32 GB RAM. The computation
times for data association, Kalman filter processing, and lane
estimation are 478 µs, 445 µs, and 227 µs, respectively,
resulting in a total computation time of 2026 µs. Additionally,
we also compared the processing times of the fusion center
for the entire process from data reception to the completion of
state estimation. The calculation times for KF, AKF, AIF and
CI were 1749 µs, 1954 µs, 3850 µs, 2276 µs, respectively.
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TABLE VI
COMPUTATION TIME

Fig. 12. Comparison of the position normalized innovation for x and y.
Each box plot illustrates the distribution of the data. The box represents
the interquartile range (IQR), which spans from the 25th percentile (lower
quartile) to the 75th percentile (upper quartile), while the red line inside the
box indicates the median value (50th percentile). The green and the blue
dashed lines represent the median and maximum values of the proposed
algorithm. It can be observed that the proposed algorithm exhibits the smallest
maximum error values and minimum median values.

The proposed method demonstrated comparable processing
times to these state-of-the-art methods, highlighting its effi-
ciency.

The effectiveness and competitiveness of the proposed
algorithm have been validated through experimental com-
parisons with state-of-the-art methods. Fig.12 presents the
comparison results. The normalized innovation values of
the Kalman filter (KF) indicate that vehicle tracking in the
x-direction has higher median absolute error, reflecting poor
performance due to randomly delayed measurements from
the magnetic sensor. In contrast, the proposed algorithm
achieves lower maximum error values and exhibits more
accurate and stable performance. Unlike the x-direction, where
MMW radar detects vehicles at far distances with signifi-
cant detection errors, the magnetic sensor mis-detects vehicle
lanes in the y-direction due to interference from vehicles
driving in adjacent lane. This suggests that vehicle tracking
in the y-direction has substantial detection uncertainty and
estimation error. The bottom part of Fig.12 illustrates tracking
performance in the y-direction. Notably, there is a significant
reduction in the normalized innovation and the maximum error
in the y-direction using the proposed method compared to
the other methods. The AIF shows suboptimal performance
because its matrix-weighted fusion algorithm is capable of
handling inaccurate measurements effectively. In contrast,
the KF shows the highest median absolute error but with
greater instability due to the less accurate lateral measure-
ments from the sensors. Both CI and Method AKF display
similar median and maximum absolute error values, indicating
comparable performance. In contrast, the proposed method
achieves a superior tracking performance in the y-direction.

This is attributed to the proposed approach of addressing
inaccuracies in lateral sensor measurements by modeling the
likelihood function using probability density functions and
implementing lane-level tracking based on Bayesian weight
mixtures.

VI. CONCLUSION

This work proposed a novel centralized asynchronous fusion
method of MMW radars and magnetic sensors for lane-level
vehicle tracking. We studied the asynchronous optimal esti-
mation for discrete-time linear system with aperiodic state
updating rate and nonuniform measurement sampling rate.
Subsequently, Bayesian mixture filtering was employed to
estimate the vehicle’s lane and achieve lane-level tracking
in tunnel with multipath interference, poor light conditions
and a lack of satellite signals. Additionally, the proposed
fusion method was implemented in a real tunnel and helps to
establish a traffic digital twin system for smart tunnel manage-
ment. Experimental results demonstrated the effectiveness and
cost-efficiency of the proposed method based on experiments
conducted in Xianfengding Tunnel, Jiangxi, China. Our study
provides new insights into roadside sensor fusion.

The good performance of the proposed method, as demon-
strated through comprehensive evaluations using both
real-world and simulated data, can be attributed to the com-
plementary integration of MMW radar and magnetic sensors,
along with the design of a highly robust and accurate fusion
algorithm. First, the fusion algorithm significantly expands the
detection range of the MMW radar while maintaining the
same level of lateral detection accuracy, enabling a broader
and more effective sensing capability. Second, the combination
of MMW radar and magnetic sensor data provides more
reliable and accurate estimations in both the lateral and radial
directions. Finally, the system’s robustness ensures that it can
effectively handle sensor failures or inaccuracies, maintaining
high performance even under challenging conditions. These
advantages highlight the practical value and reliability of the
proposed fusion approach in various scenarios. However, there
are still some limitations. For example, the method is not
yet capable of accurately detecting abnormal traffic events
such as collisions, abnormal stopping, or pedestrian tracking.
Future research will focus on the advanced data analysis for
real-time and accurate detection of abnormal traffic events
such as traffic congestion, abnormal stopping, accidents, and
pedestrian tracking.

APPENDIX A
ANALYSIS OF GAUSSIAN MIXTURE FUSION WEIGHTS

For an arbitrary probability density function fi (y), iϵ{r, b},
denote the true probability density function by ptrue(y). The
true probability density function is generally unknown, and
f f usion(y) is the probability density function that fits the true
probability density function ptrue(y) after weighted fusion
of fi (y), iϵ{r, b}. The KLD of ptrue(y) and f f usion(y) is
calculated such that the information loss between the fused
probability density function f f usion(y) and the true probabil-
ity density function ptrue(y) is minimized to determine the
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optimal fusion weights, i.e.

DK L( f f usion(y)||ptrue(y))

=

∫
f f usion(y)log

f f usion(y)

ptrue(y)
dy

=

∫ ∑
iϵ{r,b}

ωi fi (y)log
fi (y) f f usion(y)

ptrue(y) fi (y)
δy

=

∑
iϵ{r,b}

ωi (DK L( fi (y)||ptrue(y)) − DK L( fi (y)|| f f usion(y)))

(39)

where ωr and ωb represent the fusion weights of
MMW radar and magnetic sensor, respectively. Follow-
ing Equation (39), the optimal solution should minimize
DK L( f f usion(y)||ptrue(y)) in order to best the fit true proba-
bility density function, i.e

ωopt = arg min
w

∑
iϵ{r,b}

ωi (DK L( fi (y)||ptrue(y))

− DK L( fi (y)|| f f usion(y))) (40)

where w = {wr , wb}.
In practical applications, the true probability density func-

tion ptrue(y) is unknown, i.e., DK L( fi (y)||ptrue(y)) is
unknown. A simple and effective processing method is to
convert the minimization problem of Equation (40) into the
following constrained maximizing problem [40]:

ωsubopt = arg max
w

∑
iϵ{r,b}

ωi (DK L( fi (y)|| f f usion(y)) (41)

To solve the optimization problem outlined above and deter-
mine the optimal objective function, the formal representation
of the problem is as follows:

arg max
w

∑
iϵ{r,b}

ωi (DK L( fi (y)|| f f usion(y)) (42)

s.t.
∑

iϵ{r,b}

ωi = 1 (43)

ωi ≥ 0, i ∈ {r, b} (44)

Find the conditional extreme value by constructing
Lagrangian function.

L(ωi , λ, ai ) =

∑
iϵ{r,b}

ωi (DK L( fi (y)|| f f usion(y))

+ λ(
∑

iϵ{r,b}

ωi − 1) +

∑
iϵ{r,b}

ωi ai (45)

where λ and ai are the Lagrange multipliers.
The Karush-Kuhn-Tucker (KKT) conditions for the con-

strained optimization problem are given as follows:

∂L(ωi , λ, ai )

∂ωi
= 0, i = r, b (46)∑

iϵ{r,b}

ωi = 1 (47)

ωi ≥ 0, i = r, b (48)
ai ≥ 0, i = r, b (49)

ωi ai = 0, i = r, b (50)

Fig. 13. Simulation of the radar measurements as detection distance increases
for vehicles driving in different lanes.

Based on the fusion weights of MMW radar and magnetic sen-
sor obtained by Equation (41)-(50), the fused PDF ffusion(y) =

N (ufusion, δfusion) is calculated by arithmetic average (AA)
density fusion as follows:

ffusion(y) = ωr fr (y) + ωb fb(y) (51)

We assume the fused PDF as a single Gaussian, with
the mean ufusion and variance δfusion, calculated from the
fusion weights of the MMW radar and magnetic sensor. This
assumption is reasonable, as the weighted combination of the
Gaussian distributions from both sensors typically results in a
distribution that closely approximates a Gaussian, a common
approach in many sensor fusion applications. Specifically, the
mean and variance are given by:

ufusion = ωr ur + ωbub (52)

where ωr and ωb represent the fusion weights of MMW radar
and magnetic sensor, respectively, with the constraint ωr +

ωb = 1.

δfusion = ωr (δr + (ufusion − ur (ufusion − ur )))

+ ωb (δb + (ufusion − ub(ufusion − ub))) (53)

Finally, the fused probability density function is ffusion(y) =

N (ufusion, δfusion).

APPENDIX B
SIMULATION EVALUATION

The effectiveness and performance of the proposed
algorithm are first validated through simulations. As described
in Section IV-A, we assume the lane width L = 3.75 meters,
Let µ(1) = L/2, µ(2) = 3L/2, µ(3) = 5L/2 be respectively
the centers of Lane 1, Lane 2 and Lane 3 along the y
axis. The initial detected vehicle positions (zx (0), zy(0)) in
three lanes are (0, 1.875), (0, 5.625), (0, 9.375), respectively.
When the measurement distance is less than 150 meters, the
angle measurement error is set to δθ = 0.0052rad. When
the distance is greater than 150 meters, the angle measure-
ment error δθ = 0.0017rad. The MMW radar’s distance
measurement error is δ = 0.2. The threshold of 150 meters
was established through empirical measurements from real-
world MMW radar deployments, specifically during the on-site
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Fig. 14. The likelihood of lane estimates for a vehicle driving in Lane 1 and
at a distance of 150-300 meters away from the radar using radar measurements
only.

Fig. 15. The likelihood of lane estimates for a vehicle driving in Lane 1 and at
a distance of 150-300 meters away from the radar using fused measurements
from both the radars and the magnetic sensors.

calibration of MMW radar in a tunnel environment. Then, the
measurement error in the y-direction at close range (r < 150)
can be approximated by δ2

r = r2δ2
θ = (0.0052)2r2. The

measurement error in the y-direction at far range (r > 150)
can be δ2

r = r2δ2
θ z2

x/r2
+ δ2z2

y/r2. The measurement noise
of the radar in the y-direction can be assumed to be ny ∼

N (0, δr ). The simulated measurement data generated by the
radar in the y-direction can be zy(k) = zy(k − 1) + ny . The
sampling period is 0.1 s. The vehicle is assumed to move
at a constant velocity in the x-direction, advancing 2 meters
each sampling period. The simulation runs for 250 time steps.
Fig. 13 shows simulated radar measurement data. As expected,
radar measurements exhibit inaccurate lateral detection as the
detection distance increases. Within the detection range of 0 to
150 meters, radar measurements can accurately capture the
lane in which the vehicle is driving. However, beyond approx-
imately 150 meters, radar measurements become inaccurate.

Scenario 1: Inaccurate radar measurements occur at far
distances.

Fig. 14 shows the likelihood of lane estimates for a vehicle
driving in Lane 1 and at a distance of 150-300 meters
away from the radar using radar measurements only, where
the likelihood function is obtained from radar measurements
using (31), (32) and (33). As shown in Fig. 14, there are several
instances where the vehicle is incorrectly estimated to be in
Lane 2, based solely on radar measurements. In comparison,
Fig. 15 displays the likelihood of lane estimates under the
same conditions, but with fused measurements from MMW
radars and magnetic sensors. The results in Fig. 15 shows
apparent improvement in the lane estimation accuracy. Due
to the deployment pattern of magnetic sensors, the detection
accuracy along the y axis of magnetic sensors is unaffected
by the vehicle’s position along the x axis. This advantage
complements the weakness in radar detection that the lateral
detection accuracy deteriorates with the detection distance.

Fig. 16. The likelihood of radar in the 0-150m detection range when the
vehicle is in the middle lane.

Fig. 17. The likelihood of fusing magnetic sensors and radar within the
0-150m detection range when the vehicle is in the middle lane.

Scenario 2: False detection from adjacent lane vehicles by
magnetic sensors (vehicle is in the middle lane, magnetic
sensors on both sides are falsely triggered)

Fig. 16 illustrates that relying solely on radar within the 0-
150 meters detection range accurately reflects the vehicle in
the middle lane. However, when a vehicle is in the middle lane,
the magnetic sensors deployed in lane lines 0 and 3 on both
sides of the lane will generally not be triggered unless adjacent
lane vehicle false detection occasionally occurs, causing them
to be mistakenly detected. The likelihood after fusing the
magnetic sensors and radar is depicted in Fig. 17. Despite
the reduction in radar likelihood, it still indicates the vehicle
is in the middle lane. This mainly takes advantage of radar’s
superior detection capabilities at close distance, resulting in a
large fusion weight for radar compared to the magnetic sensor,
consistent with our theoretical expectations.

Simulation studies confirm the effectiveness of the MMW
radar and the magnetic sensor fusion in improving the accu-
racy of the lane estimates. Extensive simulation tests have
been conducted which shows the superiority of data fusion
of the MMW radars and the magnetic sensors, not only in
improving the accuracy and robustness of lane estimates but
also an overall improvement in vehicle tracking performance.

REFERENCES

[1] G. Mao, Y. Hui, X. Ren, C. Li, and Y. Shao, “The Internet of Things
for smart roads: A road map from present to future road infrastructure,”
IEEE Intell. Transp. Syst. Mag., vol. 14, no. 6, pp. 66–76, Nov. 2022.

[2] Q. Wang, J. Zheng, H. Xu, B. Xu, and R. Chen, “Roadside magnetic
sensor system for vehicle detection in urban environments,” IEEE Trans.
Intell. Transp. Syst., vol. 19, no. 5, pp. 1365–1374, May 2018.

[3] P. Liu, G. Yu, Z. Wang, B. Zhou, and P. Chen, “Object classification
based on enhanced evidence theory: Radar–vision fusion approach for
roadside application,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–12,
2022.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Southeast University. Downloaded on May 30,2025 at 11:56:56 UTC from IEEE Xplore.  Restrictions apply. 



16 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

[4] Y. Du, B. Qin, C. Zhao, Y. Zhu, J. Cao, and Y. Ji, “A novel spatio-
temporal synchronization method of roadside asynchronous MMW
radar-camera for sensor fusion,” IEEE Trans. Intell. Transp. Syst.,
vol. 23, no. 11, pp. 22278–22289, Nov. 2022.

[5] S. Wang et al., “Object tracking based on the fusion of roadside LiDAR
and camera data,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–14, 2022.

[6] X. Han et al., “Foundation intelligence for smart infrastructure services
in transportation 5.0,” IEEE Trans. Intell. Vehicles, vol. 9, no. 1,
pp. 39–47, Jan. 2024.

[7] R. Zhang, D. Meng, L. Bassett, S. Shen, Z. Zou, and H. X. Liu, “Robust
roadside perception: An automated data synthesis pipeline minimizing
human annotation,” 2023, arXiv:2306.17302.

[8] C. Ounoughi and S. Ben Yahia, “Data fusion for ITS: A systematic
literature review,” Inf. Fusion, vol. 89, pp. 267–291, Jan. 2023.

[9] K. Shen, Y. Li, T. Liu, J. Zuo, and Z. Yang, “Adaptive-robust fusion
strategy for autonomous navigation in GNSS-challenged environments,”
IEEE Internet Things J., vol. 11, no. 4, pp. 6817–6832, Feb. 2024.

[10] E. Arnold, M. Dianati, R. de Temple, and S. Fallah, “Cooperative per-
ception for 3D object detection in driving scenarios using infrastructure
sensors,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 3, pp. 1852–1864,
Oct. 2020.

[11] R. Chen, L. Gao, Y. Liu, Y. L. Guan, and Y. Zhang, “Smart roads:
Roadside perception, vehicle-road cooperation and business model,”
2023, arXiv:2312.09439.

[12] Z. Liu et al., “Robust target recognition and tracking of self-driving cars
with radar and camera information fusion under severe weather condi-
tions,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 6640–6653,
Jul. 2022.

[13] C. Chen, S. Rosa, C. X. Lu, B. Wang, N. Trigoni, and A. Markham,
“Learning selective sensor fusion for state estimation,” IEEE Trans.
Neural Netw. Learn. Syst., pp. 1–15, 2022.

[14] C. Tu, E. Takeuchi, A. Carballo, C. Miyajima, and K. Takeda, “Motion
analysis and performance improved method for 3D LiDAR sensor
data compression,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 1,
pp. 243–256, Jan. 2021.

[15] J. Shi, G. Hu, X. Zhang, and F. Sun, “Sparsity-based DOA estimation
of coherent and uncorrelated targets with flexible MIMO radar,” IEEE
Trans. Veh. Technol., vol. 68, no. 6, pp. 5835–5848, Jun. 2019.

[16] K. Wang, H. Xiong, J. Zhang, H. Chen, D. Dou, and C.-Z. Xu,
“SenseMag: Enabling low-cost traffic monitoring using noninva-
sive magnetic sensing,” IEEE Internet Things J., vol. 8, no. 22,
pp. 16666–16679, Nov. 2021.

[17] A. Amodio, M. Ermidoro, S. M. Savaresi, and F. Previdi, “Automatic
vehicle model recognition and lateral position estimation based on
magnetic sensors,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 5,
pp. 2775–2785, May 2021.

[18] Y. Feng, J. A. Zhang, B. Cheng, X. He, and J. Chen, “Magnetic sensor-
based multi-vehicle data association,” IEEE Sensors J., vol. 21, no. 21,
pp. 24709–24719, Nov. 2021.

[19] Z. Zhang, X. Mao, K. Zhou, and H. Yuan, “Collaborative sensing-based
parking tracking system with wireless magnetic sensor network,” IEEE
Sensors J., vol. 20, no. 9, pp. 4859–4867, May 2020.

[20] Y. Feng et al., “MagMonitor: Vehicle speed estimation and vehicle
classification through a magnetic sensor,” IEEE Trans. Intell. Transp.
Syst., vol. 23, no. 2, pp. 1311–1322, Feb. 2022.

[21] D. J. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh, “Sensor and
sensor fusion technology in autonomous vehicles: A review,” Sensors,
vol. 21, no. 6, p. 2140, Mar. 2021.

[22] Y. Hu, Z. Duan, and D. Zhou, “Estimation fusion with general asyn-
chronous multi-rate sensors,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 46, no. 4, pp. 2090–2102, Oct. 2010.

[23] L. Yan, X. R. Li, Y. Xia, and M. Fu, “Modeling and estimation of asyn-
chronous multirate multisensor system with unreliable measurements,”
IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 3, pp. 2012–2026,
Jul. 2015.

[24] W D. Blair, T. R. Rice, A. T. Alouani, and P. Xia, “Asynchronous data
fusion for target tracking with a multitasking radar and optical sensor,”
Proc. SPIE, vol. 1482, pp. 234–245, Aug. 1991.

[25] C. Zhai, M. Wang, Y. Yang, and K. Shen, “Robust vision-aided inertial
navigation system for protection against ego-motion uncertainty of
unmanned ground vehicle,” IEEE Trans. Ind. Electron., vol. 68, no. 12,
pp. 12462–12471, Dec. 2021.

[26] S. Sun, H. Lin, J. Ma, and X. Li, “Multi-sensor distributed fusion
estimation with applications in networked systems: A review paper,”
Inf. Fusion, vol. 38, pp. 122–134, Nov. 2017.

[27] Q. Liu, Z. Wang, X. He, and D. H. Zhou, “On Kalman-consensus
filtering with random link failures over sensor networks,” IEEE Trans.
Autom. Control, vol. 63, no. 8, pp. 2701–2708, Aug. 2018.

[28] X. Hao, Y. Xia, H. Yang, and Z. Zuo, “Asynchronous information
fusion in intelligent driving systems for target tracking using cameras
and radars,” IEEE Trans. Ind. Electron., vol. 70, no. 3, pp. 2708–2717,
Mar. 2023.

[29] K. Cai, T. Qu, H. Chen, B. Gao, and N. Bian, “Low-cost hybrid
multisensor fusion method and implementation for production intelligent
vehicles,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–16, 2022.

[30] Y. Shen, Z. Wang, H. Dong, and H. Liu, “Multi-sensor multi-rate
fusion estimation for networked systems: Advances and perspectives,”
Inf. Fusion, vol. 82, pp. 19–27, Jun. 2022.

[31] H. Lin and S. Sun, “Estimator for multirate sampling systems with mul-
tiple random measurement time delays,” IEEE Trans. Autom. Control,
vol. 67, no. 3, pp. 1589–1596, Mar. 2022.

[32] H. Lin and S. Sun, “An overview of multirate multisensor systems:
Modelling and estimation,” Inf. Fusion, vol. 52, pp. 335–343, Dec. 2019.

[33] W.-A. Zhang, M. Z. Q. Chen, A. Liu, and S. Liu, “Aperiodic optimal
linear estimation for networked systems with communication uncertain-
ties,” IEEE Trans. Cybern., vol. 47, no. 8, pp. 2256–2265, Aug. 2017.

[34] H. Lin and S. Sun, “Estimation for networked random sampling systems
with packet losses,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 51, no. 9,
pp. 5511–5521, Sep. 2021.

[35] Y. Bar-Shalom, “Update with out-of-sequence measurements in tracking:
Exact solution,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3,
pp. 769–777, Jul. 2002.

[36] J. Kim, K. Jo, W. Lim, M. Lee, and M. Sunwoo, “Curvilinear-coordinate-
based object and situation assessment for highly automated vehicles,”
IEEE Trans. Intell. Transp. Syst., vol. 16, no. 3, pp. 1559–1575,
Jun. 2015.

[37] K. Jo, M. Lee, and M. Sunwoo, “Track fusion and behavioral reasoning
for moving vehicles based on curvilinear coordinates of roadway geome-
tries,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 9, pp. 3068–3075,
Sep. 2018.

[38] V. K. Shopov and V. D. Markova, “Application of Hungarian algorithm
for assignment problem,” in Proc. Int. Conf. Inf. Technol. (InfoTech),
Sep. 2021, pp. 1–4.

[39] S. S. Blackman and R. Popoli, “Design and analysis of modern tracking
systems,” Tech. Rep., 1999.

[40] T. Li, H. Liang, B. Xiao, Q. Pan, and Y. He, “Finite mixture modeling
in time series: A survey of Bayesian filters and fusion approaches,” Inf.
Fusion, vol. 98, Oct. 2023, Art. no. 101827.

[41] T. Van Erven and P. Harremos, “Rényi divergence and Kullback–Leibler
divergence,” IEEE Trans. Inf. Theory, vol. 60, no. 7, pp. 3797–3820,
Jun. 2014.

[42] Y. Bar-Shalom, P. K. Willett, and X. Tian, Tracking Data Fusion, vol. 11.
Storrs, CT, USA: YBS Publishing, 2011.

[43] Y. Song, Z. Hu, T. Li, and H. Fan, “Performance evaluation metrics
and approaches for target tracking: A survey,” Sensors, vol. 22, no. 3,
p. 793, Jan. 2022.

[44] J. García, J. M. Molina, and J. Trincado, “Real evaluation for designing
sensor fusion in UAV platforms,” Inf. Fusion, vol. 63, pp. 136–152,
Nov. 2020.

Guoqiang Mao (Fellow, IEEE) was a Leading Pro-
fessor, the Founding Director of the Research Insti-
tute of Smart Transportation, and the Vice-Director
of the ISN State Key Laboratory, Xidian University,
from 2014 to 2019. Before that, he was with the
University of Technology Sydney and the University
of Sydney. He is currently a Chair Professor and
the Director of the Center for Smart Driving and
Intelligent Transportation Systems, Southeast Uni-
versity. He has published 300 papers in international
conferences and journals that have been cited more

than 15 000 times. His H-index is 57. His research interests include intelligent
transport systems, the Internet of Things, wireless localization techniques,
mobile communication systems, and applied graph theory and its applications
in telecommunications. He is a fellow of AAIA and IET. He received the “Top
Editor” Award for outstanding contributions to IEEE TRANSACTIONS ON
VEHICULAR TECHNOLOGY in 2011, 2014, and 2015. He was the Co-Chair

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Southeast University. Downloaded on May 30,2025 at 11:56:56 UTC from IEEE Xplore.  Restrictions apply. 



MAO et al.: ASYNCHRONOUS DATA FUSION WITH RANDOMLY DELAYED MEASUREMENTS 17

of the IEEE ITS Technical Committee on Communication Networks
(2014–2017). He has served as the chair, the co-chair, and a TPC member in a
number of international conferences. He has been serving as the Vice-Director
for the Smart Transportation Information Engineering Society, Chinese Insti-
tute of Electronics, since 2022, and an Editor of IEEE TRANSACTIONS ON
INTELLIGENT TRANSPORTATION SYSTEMS since 2018. He was an Editor of
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (2014–2019) and
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY (2010–2020). He is
on the list of Top 2% most-cited Scientists Worldwide by Stanford University
in 2022, 2023, and 2024 both by Single Year and by Career Impact.

Tianxuan Fu received the master’s degree in
transport information engineering and control from
Lanzhou Jiaotong University, Lanzhou, China,
in 2019. He is currently pursuing the Ph.D. degree
with the College of Communication Engineer-
ing, Xidian University, Xi’an, China. His research
interests include target tracking, data fusion, and
intelligent transportation systems.

Xiaojiang Ren (Member, IEEE) received the Ph.D.
degree in computer science from The Australian
National University in 2016. He is currently an
Associate Professor with Xidian University, Xi’an,
China. His research interests include intelligent
transport systems, the Internet of Things, wireless
sensor networks, routing protocol design for wireless
networks, and optimization problems.

Keyin Wang (Graduate Student Member, IEEE)
received the master’s degree in control engineering
from Hubei University of Automotive Technology,
Shiyan, China, in 2022. He is currently pursuing the
Ph.D. degree with the College of Communication
Engineering, Xidian University, Xi’an, China. His
research interests include vehicle localization based
on multisource information fusion.

Zhaozhong Zhang received the B.E. degree from
the University of Nottingham, U.K., in 2013, and the
M.S. and Ph.D. degrees in automotive engineering
and transport systems from Cranfield University,
U.K., in 2015 and 2020, respectively. He is cur-
rently a Lecturer with the School of Information
Engineering, Nanchang Hangkong University. His
research interests include vehicle localization and
target tracking.

Zhong Wu received the master’s degree in computer
science and technology from Nanchang University
of Aeronautics and Astronautics. He was the General
Manager and a Senior Engineer of Beijing Zhongrui
Fangxing Technology Company Ltd., a subsidiary of
Jiangxi Xixing Technology Company Ltd. His main
research interests include highway electromechani-
cal informatization and intelligent traffic perception
products and solutions.

Dahai Xu received the degree from Jiangxi Institute
of Science and Technology, China, in 2012, and
the master’s degree in control engineering from
Nanchang University. He is currently the Manager of
the Product Research and Development Department,
Beijing Zhongrui Fangxing Technology Company
Ltd. His research interests include intelligent control
of highways and intelligent transportation terminal
products.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Southeast University. Downloaded on May 30,2025 at 11:56:56 UTC from IEEE Xplore.  Restrictions apply. 


