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ABSTRACT1
3D object detection plays a critical role in connected and autonomous vehicles (CAVs), as it en-2
ables precise localization and classification of surrounding obstacles by estimating their spatial3
properties from 2D images. This capability effectively addresses the limitation of traditional 2D4
detectors, which lack depth information. However, image-based 3D detection remains challenging5
in complex scenarios, particularly under occlusion or limited fields of view, such as at intersec-6
tions or on curved roads. To address these issues, vehicle-to-infrastructure (V2I) cooperative per-7
ception frameworks leverage vehicle-to-everything (V2X) communication to transmit sensor data8
from roadside units to CAVs, enabling multi-view feature fusion from both vehicle-mounted and9
infrastructure-side cameras. In this paper, we propose V2IFormer, a novel V2I cooperative 3D10
object detection framework based on Bird’s-Eye View (BEV) representations. Instead of trans-11
mitting raw images or high-level detection outputs, V2IFormer transmits BEV features to reduce12
bandwidth while preserving essential spatial information. On the infrastructure side, we introduce13
a HeightNet module with a linearly-increasing discretization (LID) strategy to predict adaptive14
height distributions, improving long-range depth perception. On the vehicle side, multi-view im-15
age features are lifted into the BEV space using depth distribution prediction, enhancing depth16
accuracy in close-range regions. A deformable mutual-attention module is further used to adap-17
tively fuse BEV features from both sides, selectively focusing on informative regions while sup-18
pressing irrelevant content. Extensive experiments on the DAIR-V2X benchmark demonstrate that19
V2IFormer achieves state-of-the-art performance, particularly under challenging conditions with20
severe occlusion and limited visibility.21

22
Keywords: Vehicle-infrastructure cooperative, Bird’s-eye view, Connected and autonomous vehi-23
cles, 3D object detection24
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INTRODUCTION1
Accurate 3D object detection is a critical component in autonomous driving. It enables precise2
localization and classification of surrounding entities, including vehicles, pedestrians, and cyclists.3
Unlike 2D detection, which only identifies objects on a plane, 3D detection estimates their position,4
size, and orientation from 2D images—thus providing a more comprehensive understanding of the5
driving environment. However, monocular vehicle-mounted cameras face inherent limitations due6
to their low installation height, which leads to frequent occlusion and a restricted field of view.7
According to Waymo’s safety report, occlusions account for 25% of major accidents involving8
autonomous vehicles (1), highlighting the need for advanced perception systems.9

Roadside infrastructure, equipped with elevated cameras, offers a complementary perspec-10
tive with a wider field of view, reducing occlusion and extending detection range. Existing 3D11
detection approaches can be broadly divided into LiDAR-based and camera-based methods. While12
LiDAR offers high geometric precision, its high cost and limited performance in detecting small13
or distant objects hinder large-scale deployment. In contrast, camera-based systems—especially14
monocular or multi-view configurations—offer a scalable and cost-effective solution, as evidenced15
by Tesla’s vision-only Full Self-Driving pipeline (2). Vision-based roadside systems are preferred16
over LiDAR due to lower costs and seamless integration with urban infrastructure, such as traffic17
poles (3, 4). However, roadside monocular systems face inherent depth ambiguity, particularly18
over long distances. Recent methods like BEVHeight (5) and MonoGAE (6) improve depth es-19
timation by leveraging ground-relative constraints, but still face challenges in detecting distant20
and occluded objects. Vehicle-to-Infrastructure (V2I) cooperative perception offers a promising21
solution by transmitting high-viewpoint sensor data to CAVs in real-time.22

The intermediate fusion strategy integrates sensor data from both onboard vehicle sen-23
sors and roadside infrastructure into a unified bird’s eye view (BEV) representation. This de-24
sign enables extended perception coverage, mitigates occlusion effects, and ensures reliable per-25
formance under limited communication bandwidth. Owing to their ability to encode rich spa-26
tial context within a globally consistent coordinate system, BEV representations have become a27
widely adopted paradigm in camera-based autonomous driving systems. A fundamental challenge28
in BEV-based perception lies in transforming perspective-view image features into accurate and29
dense BEV features. Recent advances—such as BEVDepth (7) and BEVFormer (8)—address this30
by learning geometric projections and spatiotemporal associations, respectively. These frame-31
works have significantly advanced 3D scene understanding and have been successfully applied32
to core autonomous driving tasks, including 3D object detection (9), semantic segmentation (10),33
and map construction (11, 12). Additionally, BEV-based representations provide a common spa-34
tial foundation for V2I cooperative perception (13, 14). Despite these advancements, existing V2I35
perception methods still face notable limitations when applied to real-world multi-agent collabo-36
ration. For instance, BEVFusion (7) fuses multi-modal sensor inputs (e.g., camera and LiDAR)37
within the BEV space and achieves strong detection performance. However, its substantial com-38
putational cost and bandwidth demand hinder its suitability for distributed V2I scenarios. Mean-39
while, ImVoxelNet (15), a monocular-based 3D detection model, lifts 2D features into voxel space40
using predicted depth. While computationally efficient, its performance deteriorates in long-range41
detection and under occlusions due to limited depth precision. Other cooperative frameworks,42
such as V2X-ViT (16) and VIMI (14), adopt attention-based or concatenation-based fusion mech-43
anisms. Although these strategies offer initial improvements, they struggle to resolve the spatial44
and semantic inconsistencies inherent in cross-view data. Global attention mechanisms, such as45
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cross-attention, assign equal importance to all spatial locations, leading to inefficiencies in filtering1
irrelevant information and amplifying sensor noise. Similarly, naive feature concatenation lacks2
the capacity to adaptively align heterogeneous inputs, resulting in poor geometric consistency and3
suboptimal fusion.4

V2I cooperative perception has emerged as a promising paradigm for enhancing environ-5
mental awareness. By enabling the real-time sharing of high-elevation sensor data from infras-6
tructure to CAVs, V2I systems can significantly extend perception capabilities beyond the inherent7
limitations of onboard sensors. Enabled by 5G and V2X communication technologies (17), such8
systems support multi-view data fusion to improve situational awareness. However, a fundamental9
trade-off exists between detection accuracy and communication bandwidth. Transmitting raw sen-10
sor data retains rich detail but demands high bandwidth; transmitting only detection results reduces11
bandwidth but sacrifices spatial fidelity (13, 14, 16). To balance this trade-off, many recent meth-12
ods adopt intermediate feature representations for transmission—particularly BEV features, which13
provide a unified spatial framework for multi-sensor fusion. BEV-based approaches offer strong14
spatial context and support efficient fusion of vehicle-side and infrastructure-side features. Never-15
theless, transforming image-view features into accurate BEV features remains a major challenge,16
especially under monocular setups.17

To address the challenges of limited bandwidth and multi-source feature fusion in V2I18
cooperative 3D object detection, we propose V2IFormer, a novel framework based on BEV rep-19
resentations. Instead of transmitting raw images or high-level predictions, V2IFormer transmits20
intermediate BEV features to reduce bandwidth while preserving spatial detail. On the infrastruc-21
ture side, we introduce a HeightNet module with a linearly-increasing discretization (LID) strategy22
to predict adaptive height distributions and improve long-range depth perception. On the vehicle23
side, image features from multiple views are lifted into the BEV space using depth distribution24
prediction based on the LSS framework (18), which enhances accurate depth perception at close25
range. A deformable mutual-attention module then adaptively aligns and fuses dual-view BEV26
features by focusing on informative regions and suppressing irrelevant noise, ensuring robustness27
under occlusion and varying viewpoints. Experiments on the DAIR-V2X benchmark demonstrate28
that V2IFormer achieves state-of-the-art performance in complex driving scenarios. The main29
contributions of this paper are summarized as follows:30

1. We propose V2IFormer, a novel V2I cooperative 3D object detection framework that31
transmits BEV features to balance perception accuracy and bandwidth efficiency. By32
integrating vehicle-mounted and infrastructure-side monocular data, it enhances robust-33
ness under occlusion and limited visibility.34

2. Specialized BEV generation modules are designed on both the infrastructure and vehi-35
cle sides. On the infrastructure side, we introduce a HeightNet module with a linearly-36
increasing discretization (LID) strategy to predict adaptive height distributions, enhanc-37
ing long-range depth perception. On the vehicle side, image features from multiple38
views are lifted into BEV space using depth distribution prediction based on the LSS39
framework, which improves depth accuracy in close-range regions.40

3. A deformable mutual-attention module is employed to adaptively fuse dual-source BEV41
features by selectively focusing on informative regions while suppressing irrelevant42
noise. The effectiveness of V2IFormer is validated on the DAIR-V2X benchmark,43
where it achieves state-of-the-art 3D detection performance in complex driving sce-44
narios.45
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The structure of the paper is as follows. Section II surveys the state of the art in 3D object1
detection, collaborative perception, and BEV scene understanding, outlining recent advancements2
and identifying current limitations. Section III details the proposed V2IFormer architecture, which3
features dual-side BEV generation and a deformable mutual-attention fusion mechanism. Section4
IV reports the experimental evaluation on the DAIR-V2X benchmark, highlighting the method’s5
accuracy and robustness. Finally, Section V summarizes the findings and explores directions for6
future research.7

LITERATURE REVIEW8
Camera-Based 3D Object Detection9
Current 3D object detection techniques are generally classified into two main categories based10
on the type of sensing modality: image-based methods and LiDAR-based point cloud methods.11
While LiDAR offers high detection accuracy and precise spatial measurements, its high cost, bulky12
hardware, and limited effectiveness in detecting small or distant objects hinder its widespread de-13
ployment in real-world applications. In contrast, camera-based 3D object detection estimates 3D14
bounding boxes using image data from monocular cameras. This approach is increasingly favored15
over LiDAR for several compelling reasons. First, cameras are significantly more cost-effective16
and widely available, making them suitable for large-scale deployment in both consumer vehicles17
and roadside infrastructure (19, 20). For example, Tesla’s FSD system demonstrates the viabil-18
ity of a vision-only solution by achieving advanced driver assistance capabilities using a suite of19
eight cameras (2). Second, cameras capture rich visual cues—including color, texture, and con-20
textual information—that are essential for accurate object classification and comprehensive scene21
understanding, especially in complex environments (8). Third, recent advances in deep learning,22
particularly in monocular depth estimation and neural network architectures, have significantly im-23
proved the performance of image-based 3D detection systems. Tesla’s FSD performance in urban24
scenarios with minimal human intervention highlights this progress (21). Despite challenges such25
as depth ambiguity, occlusion, and sensitivity to environmental conditions, camera-based 3D ob-26
ject detection strikes a favorable balance between cost, scalability, semantic richness, and system27
integration feasibility. These advantages make it a promising solution not only for autonomous28
driving but also for infrastructure-assisted perception and broader intelligent transportation appli-29
cations.30

Camera-based 3D object detection methods can be categorized into vehicle-mounted and31
infrastructure-based approaches. Early works extend 2D detectors to jointly predict both 2D and32
3D object attributes. Notable examples include FCOS3D (22), DETR3D (23), and the PETR series33
methods (24, 25), which incorporate geometric priors or temporal context to enhance spatial rea-34
soning. Alternatively, some methods operate directly in 3D space by lifting 2D image features into35
structured 3D representations. For instance, OFT (26) introduces orthographic feature transforms,36
while LSS (18) predicts depth distributions to generate BEV features. BEVDepth (7) leverages37
LiDAR supervision to refine depth prediction, and CrossDTR (27) improves spatial understanding38
through depth-aware embeddings and transformers. However, these methods are constrained by39
occlusions and limited fields of view inherent to onboard sensors.40

Compared to vehicle-mounted systems, roadside cameras provide elevated viewpoints and41
broader scene coverage, effectively compensating for the limited field of view and occlusion issues42
inherent to onboard sensors. Despite these advantages, infrastructure-based detection faces chal-43
lenges such as depth ambiguity, reduced accuracy for distant objects, and persistent occlusions.44
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To mitigate these issues, BEVHeight (5) predicts height distributions to enhance depth estimation1
from monocular inputs. CBR (28) removes extrinsic calibration dependence by using MLP-based2
feature transformation but at the cost of geometric precision. Furthermore, public benchmarks3
such as DAIR-V2X (13) and Rope3D (29) have been developed to evaluate the effectiveness of4
roadside perception systems.5

Cooperative Perception6
V2I cooperative perception enhances situational awareness by enabling information sharing be-7
tween vehicles and infrastructure. It helps mitigate occlusions and extends the perception range.8
Based on the data format used for communication, fusion strategies can be classified into early,9
late, and intermediate fusion. Early fusion transmits raw sensor data, such as camera images,10
which preserves detailed information for aggregation but requires high communication bandwidth.11
Late fusion transmits only final detection outputs like 3D bounding boxes, reducing bandwidth but12
sacrificing contextual richness. For example, Cooper (30) uses early fusion to broadcast LiDAR13
data, which incurs substantial communication costs. In contrast, late fusion methods (13) trans-14
mit predictions from each CAV, but their performance suffers from the lack of shared context and15
reliance on individual detection quality.16

Intermediate fusion offers a better trade-off by transmitting compact feature maps, such17
as BEV representations. These features retain spatial information while significantly lowering18
communication overhead. Typically, roadside units encode raw sensor inputs into intermediate19
features using local neural networks and transmit them to CAVs via low-latency V2X links. CAVs20
can then receive feature maps from multiple viewpoints, increasing spatial diversity. Effective21
fusion of these features is essential. Aggregation methods like feature-wise maximum (31) and22
summation (32) are commonly applied. Attention-based approaches, such as AttFuse (4), V2X-23
ViT (16), and CoBEVT (33), leverage transformer architectures for better alignment. Inspired24
by these, we propose an intermediate BEV fusion framework that employs deformable mutual-25
attention to adaptively combine vehicle and infrastructure features.26

BEV Scene Understanding27
BEV perception plays a key role in spatial reasoning by projecting sensor information into a unified28
top-down space. The core challenge lies in lifting perspective-view image features to the BEV29
domain. Existing methods fall into two categories: implicit and explicit lifting.30

Implicit lifting methods learn image-to-BEV mappings using neural networks without en-31
forcing geometric constraints. MLP-based methods, such as VPN, convert image features into32
BEV space for downstream tasks like segmentation and road layout estimation (34). Transformer-33
based approaches, such as PETR (24) and BEVFormer (8), use cross-attention between BEV34
queries and image features to learn spatial correspondence. BEVFormer further incorporates tem-35
poral fusion for improved temporal consistency. However, these methods often neglect camera36
intrinsics and extrinsics, which are crucial for precise spatial alignment.37

Explicit lifting methods rely on camera geometry and estimated depth to project features38
accurately into BEV. Classical methods like IPM (35) assume a flat ground and fixed intrinsics,39
but are prone to sampling artifacts. To overcome the ill-posed nature of monocular depth recovery,40
Pseudo-LiDAR (36) reconstructs 3D point clouds from estimated depth. More recent models,41
such as LSS (18) and BEVDepth (7), predict dense depth distributions and use calibrated camera42
parameters for BEV transformation. BEVHeight (5) extends this by predicting height distributions43
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rather than absolute depth, improving localization under uncertainty.1

METHODOLOGY2
V2IFormer leverages V2X communication to integrate perception from both vehicles and infras-3
tructure. It consists of three key modules: an infrastructure-side BEV branch, a vehicle-side BEV4
branch, and a fusion module that combines the BEV features from both sources, as illustrated in5
Figure 1.6
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Figure 1: The overall framework of V2IFormer. The proposed framework comprises three
key components: the infrastructure-side branch, the vehicle-mounted branch, and the BEV
feature fusion module. On the infrastructure side, a HeightNet module with a LID strategy
predicts adaptive height distributions. These predictions are used to lift image-view features
into height-based BEV features, enhancing long-range depth perception. On the vehicle-
mounted side, image features from multiple views are lifted into BEV space using depth
distribution prediction based on the LSS framework, which improves depth estimation ac-
curacy in close-range regions. Finally, the BEV feature fusion module employs deformable
mutual-attention to adaptively combine BEV features from both the infrastructure and vehi-
cle branches. The resulting fused BEV features are then fed into the detection head for final
3D object prediction.

Infrastructure-Side Branch7
In monocular 3D perception, depth prediction is a widely used approach for constructing BEV8
representations. At close range, objects occupy a relatively large number of pixels, providing rich9
visual cues such as texture and clear contours, which facilitate accurate depth estimation. In such10
conditions, depth-based methods can achieve reliable 3D reconstruction by exploiting strong ge-11
ometric priors. However, in long-range scenarios, the effectiveness of depth prediction declines12
significantly. Distant objects appear much smaller in the image—often covering only a few pix-13
els—resulting in insufficient spatial evidence for reliable depth inference. This leads to unstable or14
biased predictions, limiting the applicability of depth-based methods in V2I settings that require15
long-range and occlusion-resilient perception.16

To address this, inspired by height-based modeling strategies such as BEVHeight (5), we17
adopt an alternative approach that estimates object height as an intermediate geometric represen-18
tation. Unlike depth, object height is relatively invariant to distance and less sensitive to projection19
distortion. In structured traffic environments, common object categories—such as vehicles and20
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pedestrians—exhibit consistent height patterns, making height a more robust cue for 3D reason-1
ing. Furthermore, infrastructure-mounted cameras—due to their elevated viewpoint—can better2
leverage height information to infer object location in 3D space with reduced ambiguity. This3
makes height-based modeling particularly suitable for roadside perception tasks that emphasize4
long-range detection and occlusion resilience. Based on these insights, we introduce the Height-5
Net module, a roadside BEV feature extraction module centered on height prediction. HeightNet6
employs a LID strategy (37) to model height distributions, enabling precise localization of distant7
targets and enhancing the geometric consistency of BEV features.8

HeightNet9
To enable robust and geometry-aware BEV feature extraction from roadside monocular images,10
we introduce HeightNet, a dedicated height prediction network that estimates pixel-wise height11
distributions from 2D image features. Unlike depth, object height exhibits greater invariance across12
distances and is less sensitive to scale distortions, making it a more reliable geometric cue for long-13
range perception.14

As illustrated in Figure 1, HeightNet consists of two main components: a context branch15
and a height estimation branch. The context branch extracts semantic features from the input16
2D image features using a series of residual blocks (38) and a channel attention module. These17
features are then refined by a deformable convolution (DCN) layer (39), which enhances spatial18
adaptability and focuses on object-relevant regions. In parallel, the camera’s intrinsic parame-19
ters (I), such as focal length and principal point, and extrinsic parameters (E), including rotation20
and translation vectors that define the camera’s position and orientation in 3D space, are encoded21
through two MLPs to generate camera-aware features Fcam. These features are then fused with the22
contextual features to improve the network’s adaptability across different viewpoints and camera23
configurations.24

Height prediction is formulated as a classification task by discretizing the continuous height25
range into a predefined number of bins. To ensure accurate and consistent modeling across varying26
distances, we adopt LID (37) to partition the height interval. LID increases the bin width linearly27
with height, which balances sampling resolution across short and long ranges. LID yields more28
consistent relative error across the full height spectrum, offering both precision for nearby objects29
and robustness for distant targets. This design choice significantly enhances the quality of height-30
aware BEV features, particularly under long-range and occluded conditions, which are prevalent31
in V2I scenarios.32

Formally, the discretized bin center hi in LID is defined as:33

hi = hmin +(hmax −hmin) ·
i(i+1)

NH(NH +1)
(1)34

35
Where NH is the total number of bins, and [hmin,hmax] defines the target height interval. This36
formulation ensures that the discretization adapts smoothly to the distribution of object heights in37
real-world traffic scenes.38

The height prediction module, as illustrated in Figure 1, is designed to estimate pixel-wise39
height distributions from image features. The network architecture begins with a set of residual40
blocks (38), which process the input 2D image features F2d . To enhance geometric adaptabil-41
ity, these features are conditioned on camera parameters Fcam, which encode both intrinsic and42



Mao, Fu, Ren and Wang 9

extrinsic calibration data. The features are then refined using a deformable convolution (DCN)1
layer (39), which dynamically adjusts the sampling positions to better capture object boundaries2
and spatial context. Finally, the processed features are passed through a prediction head ψh(·) to3
output per-pixel height distributions. The entire height prediction process can be formulated as:4

Hpre = ψh

(
DCN

(
Res

(
F2d | Fcam

)))
(2)5

6
Where Res(·) denotes the residual block operations, DCN(·) represents the deformable convolu-7

tion, and ψh(·) is the prediction network. The output Hpre ∈ RNH× H
16×

W
16 represents the predicted8

discretized height distribution over NH height bins, at a spatial resolution reduced by a factor of 169
relative to the input image.10

Height-based 2D-to-3D Feature Projection11
To construct a 3D representation from 2D image features, we leverage the predicted height distri-12
bution Hpre to lift pixel-level features into a frustum-shaped 3D space. This process enables spatial13
reasoning in the height dimension, which is particularly useful for generating BEV representations14
from monocular images.15

We first extract semantic contextual features Fcontext from the 2D input features F2d using16
a series of convolutional operations and channel attention mechanisms. These context features are17
then combined with the height distribution Hpre through an outer product operation:18

F3d
height = Fcontext ⊗Hpre (3)19

20
Where ⊗ denotes the outer product across the channel and height dimensions. This results in a21
volumetric feature tensor F3d

height ∈ RCc×NH× H
16×

W
16 , where Cc is the number of channels and NH is22

the number of discretized height bins.23
To enable downstream BEV-based processing, we project the frustum-shaped feature vol-24

ume into the ego-vehicle coordinate system through a three-stage geometric transformation pipeline,25
as illustrated in Figure 2.26

Step 1: Image Pixel to Camera Coordinates27
For each image pixel pimag = (u,v), we define a reference point Pcam

ref at unit depth (i.e., depth = 1)28
in the camera coordinate system. Using the camera intrinsic matrix I, the mapping is computed as:29

30

Pcam
ref = I−1

u
v
1

 (4)31

32
Where I is the intrinsic matrix:33

I =

 fx 0 cx
0 fy cy
0 0 1

 (5)34

35
Here, fx and fy are the focal lengths in the horizontal and vertical directions, respectively, and36
(cx,cy) denotes the principal point (optical center) of the image.37
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H

Y

ZX

×

Figure 2: Height-based 2D–3D projector. OegoXY Z denotes the ego-vehicle coordinate sys-
tem. Ovirt shares the same origin as Ocam, but its Y -axis is perpendicular to the ground. A
pixel in the image plane, with an estimated height hi from the predicted distribution, is pro-
jected through this 2D-to-3D process into a 3D point Pego in the ego coordinate system.

Step 2: Camera to Virtual Coordinate System1
The reference point is transformed into the virtual coordinate system via:2

Pvirt
ref = Tvirt

cam Pcam
ref (6)3

4
Where Tvirt

cam encodes the extrinsic transformation (rotation and translation) from the camera to5
the virtual coordinate system. The virtual coordinate frame is defined such that the origin lies at6
the camera’s optical center, with the Y -axis pointing downward (toward the ground), the Z-axis7
pointing forward, and the X-axis to the right.8

Step 3: Virtual to Ego Coordinates9
For each height bin hi, we compute the corresponding 3D point in the ego vehicle coordinate10
system using the principle of similar triangles:11

Pheight
ego = Tego

virt ·
H −hi

yvirt
·Pvirt

ref (7)12
13

Where Tego
virt transforms coordinates from the virtual frame to the ego frame, H is the known camera14

height above the ground, and yvirt is the vertical coordinate of Pvirt
ref . The factor H−hi

yvirt
scales the15

reference point to the appropriate height slice. This process assigns each pixel–height pair (u,v,hi)16
to a unique 3D position in the ego coordinate system. The full 3D volume is then projected onto the17
BEV plane by applying sum-pooling along the height dimension NH . The result is a compact 2D18
BEV feature map that retains semantic and geometric context, and is well-suited for downstream19
tasks such as object detection and multi-view feature fusion.20
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Vehicle-Mounted BEV Features Extraction1
In contrast to the infrastructure-side pipeline, which typically transforms 2D features into BEV rep-2
resentations using height distributions, the vehicle-mounted perception module independently gen-3
erates BEV features by transforming image data captured from multiple onboard cameras. These4
features are projected into a unified top-down BEV space centered on the ego vehicle, enabling5
spatially consistent reasoning within the vehicle’s surrounding environment.6

The BEV space is discretized into a fixed-resolution 2D grid of size X ×Y , representing7
a BEV of the environment. Each grid cell corresponds to a fixed physical area of d × d meters8
on the ground plane (e.g., d = 0.5m). To populate this grid with meaningful semantic features,9
raw image data must be lifted from the 2D image plane into 3D space using depth information,10
and then reprojected into the BEV plane based on their real-world positions. Given the absence11
of direct depth sensing in monocular inputs, we adopt the LSS paradigm (18), which estimates12
depth distributions for each pixel and uses them to construct a 3D volumetric representation before13
collapsing it into a 2D BEV feature map.14

Let Ivehicle ∈ RNv×3×H×W represent the multi-view RGB images captured by Nv vehicle-15
mounted cameras, each with spatial resolution H ×W . These images are first passed through16
a shared 2D convolutional backbone to extract visual features, followed by a feature pyramid17
network (FPN) to generate multi-scale representations. The output is then downsampled to 1

1618
of the original resolution, producing intermediate feature maps for each view.19

This output is further processed through two parallel branches:20
• Depth Estimation Branch: Outputs per-pixel discrete depth distributions Dvehicle ∈21
RNv×Nd× H

16×
W
16 , where Nd = r

∆r is the number of depth bins covering the range [1,r] me-22
ters (typically r = 100 m, ∆r = 1 m), modeling the probability of each pixel belonging to23
different depths along its viewing ray.24

• Context Feature Branch: Outputs semantic features Dcontext ∈ RNv×CF× H
16×

W
16 , where25

CF is the channel dimension of the feature space.26
For each pixel, Nd candidate 3D points are sampled along its camera ray by applying in-27

verse projection using the known camera intrinsics and extrinsics. Each 3D point is assigned a28
semantic feature by weighting the corresponding context feature with the associated depth proba-29
bility, resulting in a set of probabilistically weighted 3D point features across all camera views.30

These 3D features are then projected onto the ground plane and mapped to the corre-31
sponding BEV grid cells. To aggregate information from multiple overlapping points that fall32
into the same grid cell, a pooling operation is applied, producing the final BEV feature map33
Fbev

vehicle ∈ RX×Y×CF . This representation encodes high-level semantic and geometric information34
aligned in a globally consistent spatial frame centered on the ego vehicle. Importantly, the BEV35
features generated from vehicle-mounted cameras can be seamlessly integrated with those pro-36
duced by the infrastructure-side pipeline. This fusion enables complementary advantages: vehicle-37
side sensors provide dense near-field coverage, while infrastructure-side sensors offer broader and38
more stable field-of-view, especially beneficial in complex occlusion scenarios or when coopera-39
tive perception is required.40

Vehicle-Infrastructure BEV Feature Fusion41
The BEV features Fbev

road and Fbev
vehicle exhibit fundamentally different error characteristics due to42

their observation perspectives. Simple feature stacking fails to align features from the same spatial43
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region accurately. As depicted in Figure 1, the V2I BEV Fusion Block leverages deformable mu-1
tual attention to suppress spatial interference from irrelevant regions and effectively fuse roadside2
and vehicle-mounted BEV features in relevant areas. We employ BEV queries to extract features3
from both roadside and vehicle-side BEV data. Instead of processing all spatial positions, the4
model focuses on key locations near each BEV query for feature aggregation, adaptively assigning5
attention weights to these points. This approach, inspired by deformable mutual-attention in (40),6
achieves efficient and precise feature integration.7

Given BEV features Fbev
road ∈ RX×Y×CF and Fbev

vehicle ∈ RX×Y×CF , we first apply a 1×1 con-8
volution to align their feature channels. Subsequently, we generate query BEV features Qp ∈9
RX×Y×CF as follows:10

Qp = conv1×1

([
Fbev

road;Fbev
vehicle

])
(8)11

12
Where Qp denotes the query at position p = (x,y) from the concatenated features. These queries13
merge roadside and vehicle features, capturing spatial context effectively. For precise fusion, we14
apply deformable mutual-attention to the roadside feature map, computed as:15

DeformAttn(Qp, p,Fbev
road) =

M

∑
m=1

Wm

[
K

∑
k=1

Amqk ·W′
mFbev

road(p+∆pmqk)

]
(9)16

17
Where M is the number of attention heads, m indexes the attention head, K is the number of18
sampled keys, and k indexes each key. Amqk ∈ [0,1] is the attention weight, and ∑

K
k=1 Amqk = 1.19

∆pmqk denotes the learned offset from the reference point p, and Fbev
road(p+∆pmqk) is the feature20

at the sampled location. Wm aggregates the multi-head outputs and W′
m is the input projection21

weight.22
The same process applies to the vehicle-side feature Fbev

vehicle. The fused BEV features Fbev
fused23

at spatial position p are then computed as:24

Fbev
fused = BevFuse(Fbev

road,F
bev
vehicle) =

HW

∑
p=0

Q′
p + ∑

V∈{Fbev
road,F

bev
vehicle}

DeformAttn(Qp, p,V )

 (10)25

26
Where H and W are the height and width of the BEV map, and Q′

p is the sampled query feature at27
position p from either the roadside or vehicle-mounted BEV branch.28

This approach offers two key benefits. First, it selectively aggregates features from reliable29
locations, avoiding corrupted regions such as those affected by occlusions or sensor noise. Second,30
it assigns lower attention weights to less reliable areas, prioritizing high-quality features.31

EXPERIMENTAL EVALUATION32
We evaluate the proposed V2I collaborative perception framework on the DAIR-V2X dataset. We33
first outline the experimental setup and key characteristics of the dataset. We then conduct a com-34
parative analysis between V2IFormer and representative state-of-the-art methods.35

Dataset36
Most existing V2I perception studies rely on simulated datasets with idealized V2X communica-37
tion, limiting their applicability in real-world scenarios. In contrast, we conduct our evaluation on38
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the DAIR-V2X dataset (13), which captures real-world data. Released in 2022 by Baidu Apollo and1
the Institute for AI Industry Research (AIR) at Tsinghua University, DAIR-V2X is the first publicly2
available benchmark designed for vehicle-infrastructure cooperative autonomous driving.3

The dataset covers 10 km of urban roads, 10 km of highways, and 28 intersections within4
Beijing’s High-Level Autonomous Driving Demonstration Zone. It encompasses diverse traf-5
fic scenarios under varying weather conditions (sunny, rainy, foggy) and lighting environments6
(day and night), offering comprehensive support for perception research. DAIR-V2X provides7
rich multi-modal data, including synchronized camera images, LiDAR point clouds, timestamped8
annotations, and calibration information. Specifically, the DAIR-V2X-C subset contains 38,8459
annotated frames for cooperative detection. Our experiments use the VIC-Sync portion of DAIR-10
V2X-C, comprising 9,311 vehicle-infrastructure synchronized frame pairs. Annotations, originally11
given in world coordinates, are converted into vehicle coordinates for evaluation. We follow the12
official data split—4,822 training frames, 17,955 validation frames, and 2,694 test frames—and13
adopt the KITTI-style average precision metric for 3D object detection (19).14

Evaluation Metrics15
We adopt the official evaluation metrics defined by the DAIR-V2X dataset (13) to assess both detec-16
tion accuracy and communication efficiency. Specifically, Average Precision (AP) (20) is used to17
evaluate 3D object detection performance, while Average Byte (AB) quantifies transmission cost.18
For 3D detection, AP is computed by comparing predicted results with ground-truth annotations19
provided in the DAIR-V2X-C subset. Following the VIC3D evaluation protocol, we evaluate ob-20
jects from the vehicle’s egocentric perspective, considering those located within a predefined 3D21
region in the vehicle coordinate frame: x ∈ [xmin,xmax]m, y ∈ [ymin,ymax]m, and z ∈ [zmin,zmax]m.22
Detection performance is reported over the full 0–100 m range using a 3D Intersection-over-Union23
(IoU) threshold of 0.5. Two components are evaluated: AP3D for full 3D bounding boxes and24
APBEV for BEV projections. In parallel, AB captures the average size (in bytes) of transmitted25
data, enabling an assessment of perception quality under communication constraints.26

Implementation Specifics27
We conduct comparative experiments between the proposed V2IFormer and several state-of-the-art28
baselines. For late fusion settings, we adopt ImVoxelNet (15) as the monocular detector applied to29
each view independently. For early fusion, PointPillars (41) serves as the LiDAR-based detection30
method. On the vehicle side, we benchmark multi-view camera fusion techniques, including BEV-31
Former (8), which projects image features into BEV space, and VIMI (14), a recent multi-view32
fusion approach. On the infrastructure side, BEVDepth (7) is used to aggregate multi-camera in-33
puts from elevated perspectives. For fair comparison, all models use a ResNet-101 backbone for34
image encoding. Input images are resized to 864× 1536 pixels during training. We follow the35
data augmentation strategy of BEVDepth, applying random cropping, scaling, flipping, and rota-36
tion to images, and random scaling, flipping, and rotation to BEV representations. All models are37
trained for 150 epochs using the AdamW optimizer (42), with an initial learning rate of 2×10−4,38
distributed across eight NVIDIA RTX 3090 GPUs.39

Quantitative Results40
Quantitative evaluation results are reported in Table 1 and Table 2, covering both 3D object detec-41
tion and BEV-based detection across multiple range intervals. Overall, the proposed V2IFormer42
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outperforms all baseline methods in terms of both detection accuracy and range robustness. Specif-1
ically, V2IFormer achieves an overall 3D detection performance of 55.64% in AP3D and 59.63% in2
APBEV. Compared to the representative late fusion method ImVoxelNet, which yields 26.56% AP3D3
and 31.40% APBEV, V2IFormer improves accuracy by 29.08 and 28.23 percentage points, respec-4
tively. Against the early fusion method PointPillars, which achieves 50.03% AP3D and 53.73%5
APBEV, V2IFormer still gains an additional 5.61 and 5.90 points in 3D and BEV detection, respec-6
tively, showing its superiority even over strong baselines with direct access to LiDAR data.7

The advantages of V2IFormer become even more evident under long-range detection (50–8
100 m), where accurate perception is typically more difficult due to reduced resolution, depth am-9
biguity, and increased occlusion. In this range, V2IFormer achieves 35.50% AP3D and 44.80%10
APBEV. These values exceed those of PointPillars (33.05% / 36.17%) and ImVoxelNet (9.81%11
/ 12.99%) by significant margins. This suggests that the intermediate fusion strategy not only12
effectively aggregates cross-view information but also enhances spatial consistency, especially13
in sparsely observed or occluded areas. Notably, PointPillars exhibits relatively strong perfor-14
mance in the 30–50 m mid-range interval (60.38% AP3D and 64.08% APBEV), slightly outperform-15
ing V2IFormer in this specific range (59.06% / 63.04%). However, this advantage comes at the cost16
of higher bandwidth usage and performance drop at long range. In contrast, V2IFormer maintains17
consistent and well-balanced detection accuracy across all three intervals (short, mid, and long),18
demonstrating its robustness and adaptability to varying spatial configurations.19

Table 1: 3D detection performance (AP3D, IoU=0.5) on the DAIR-V2X-C dataset.

Fusion Model Overall 0–30 30–50 50–100
Only-Veh VIMI (14) 8.66 19.11 4.33 0.20
Only-Inf BEVFormer (8) 8.80 18.07 3.71 1.76
Only-Inf BEVDepth (7) 7.36 16.23 1.79 0.18
Late Fusion ImVoxelNet (15) 26.56 34.20 17.20 9.81
Early Fusion PointPillars (41) 50.03 53.07 60.38 33.05
Intermediate-
Fusion

V2IFormer 55.64 72.36 59.06 35.50

Table 2: BEV detection performance (APBEV, IoU=0.5) on the DAIR-V2X-C dataset.

Fusion Model Overall 0–30 30–50 50–100
Only-Veh VIMI (14) 10.46 22.42 5.57 0.42
Only-Inf BEVFormer (8) 13.45 24.76 6.46 4.63
Only-Inf BEVDepth (7) 13.17 26.42 5.00 4.82
Late Fusion ImVoxelNet (15) 31.40 37.75 21.21 12.99
Early Fusion PointPillars (41) 53.73 55.80 64.08 36.17
Intermediate-
Fusion

V2IFormer 59.63 71.05 63.04 44.80

Communication overhead is a critical constraint for real-time V2X cooperative perception20
systems, especially in practical deployments with limited wireless bandwidth. Table 3 presents the21
average communication bandwidth (AB) required by each method, revealing a clear efficiency-22
accuracy trade-off across fusion strategies. V2IFormer requires only 146.24 KB of data trans-23



Mao, Fu, Ren and Wang 15

mission per frame, which is an order of magnitude lower than the early fusion baseline Point-1
Pillars (1382.28 KB). Despite this reduction, V2IFormer not only retains but exceeds the detec-2
tion performance of PointPillars, indicating its ability to minimize redundant information trans-3
fer by focusing on compact, semantically meaningful features. Compared with the late fusion4
approach ImVoxelNet, which transmits as little as 102.32 bytes per frame by independently pro-5
cessing monocular inputs, V2IFormer consumes moderately more bandwidth. However, this slight6
increase in data exchange yields substantial performance gains—+29.08% in AP3D and +28.23%7
in APBEV—demonstrating that the cost is well-justified.8

This evaluation underscores the efficiency of the proposed intermediate fusion strategy. It9
strikes a favorable balance between detection accuracy and communication cost, achieving near-10
optimal performance without incurring the excessive transmission burden typical of early fusion11
methods. Such a characteristic makes V2IFormer particularly suitable for scalable deployment12
in bandwidth-constrained vehicular environments, where minimizing latency and data traffic is13
essential.14

Table 3: Average communication bandwidth (AB) required for each method.

Fusion Model AB (Byte)
Only-Veh VIMI (14) 0
Only-Inf BEVFormer (8) 0
Only-Inf BEVDepth (7) 0
Late Fusion ImVoxelNet (15) 102.32
Early Fusion PointPillars (41) 1382.28K
Intermediate-Fusion V2IFormer 146.24K

We conduct a comprehensive evaluation on the DAIR-V2X-C dataset, which defines short-15
range as 0–30 m, mid-range as 30–50 m, and long-range as 50–100 m. Among all compared meth-16
ods, the proposed intermediate fusion approach, V2IFormer, consistently delivers the best perfor-17
mance across all distance intervals. Specifically, it achieves 35.50% AP3D and 44.80% APBEV in18
the long-range (50–100 m) scenario—significantly surpassing early fusion (33.05% / 36.17%) and19
late fusion (9.81% / 12.99%) methods. Although early fusion (e.g., PointPillars) shows competitive20
accuracy at close and mid-ranges, it suffers from excessive communication overhead, transmitting21
approximately 1.38 MB of data per frame. In contrast, V2IFormer not only achieves higher detec-22
tion accuracy, especially at long distances, but also maintains a much lower communication load23
of only 146.24 KB per frame, making it more suitable for real-time cooperative perception sys-24
tems with limited bandwidth. ImVoxelNet, relying solely on monocular camera inputs, struggles25
with detecting distant objects due to insufficient depth information. PointPillars performs better26
for infrastructure-side perception by directly processing LiDAR point clouds, which offer precise27
spatial geometry. However, its performance declines at longer ranges. In summary, V2IFormer ef-28
fectively addresses three key challenges in V2X cooperative perception: achieving high detection29
accuracy, ensuring reliable long-range performance, and maintaining efficient bandwidth usage for30
scalable deployment.31

HandlingDynamicWeathersandLightingConditions32
V2IFormer is then evaluated on real-world datasets that naturally encompass diverse and dynami-33
cally changing environmental conditions, including variations in challenging weather (e.g., rainy,34
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Figure 3: Visualization results under occlusion and adverse weather conditions show that
V2IFormer accurately detects partially occluded vehicles, as well as distant vehicles and
pedestrians in rainy and foggy scenes.

foggy). While recent advances in 3D object detection have achieved remarkable performance on1
standard vehicle-centric benchmarks such as KITTI (19), nuScenes (43), and Waymo (44), their2
generalization capability under extreme or adverse conditions remains limited (45, 46). To address3
this, some prior works have curated dedicated datasets targeting challenging weather scenarios4
for robust vehicle detection (47, 48). In contrast, the cooperative vehicle-infrastructure datasets5
DAIR-V2X used in this work are collected in-the-wild under a wide spectrum of real-world con-6
ditions without frame-level annotation of specific weather types. The absence of fine-grained en-7
vironmental annotations precludes rigorous quantitative benchmarking under specific conditions,8
limiting comprehensive performance evaluation. Consequently, we adopt qualitative assessments9
to validate V2IFormer’s robustness in challenging scenarios. As illustrated in Figure 3, we com-10
pare detection results under occlusion, foggy, and rainy conditions using PointPillars (41), and our11
V2IFormer. V2IFormer consistently outperforms baselines, accurately detecting partially occluded12
vehicles, small pedestrian targets, and distant objects even in low-visibility or degraded illumina-13
tion conditions. This superior performance stems from V2IFormer’s enhanced BEV representation,14
which effectively fuses vehicle-side and infrastructure-side BEV features.15
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CONCLUSION1
In this paper, we proposed V2IFormer, a novel V2I cooperative 3D object detection framework2
that integrates multi-view image features from both vehicle-mounted and infrastructure-side cam-3
eras into a unified BEV representation. To address the challenges of occlusion and limited field of4
view in complex driving scenarios, we introduced a HeightNet module on the infrastructure side5
to enhance BEV feature generation through height-aware modeling. On the vehicle side, depth6
distribution prediction based on the LSS framework is employed to lift perspective-view features7
into BEV space. Furthermore, a deformable mutual-attention module was designed to adaptively8
fuse features from both views, focusing on informative regions and suppressing irrelevant noise.9
Extensive experiments on the DAIR-V2X benchmark validate the effectiveness of the proposed10
approach. V2IFormer consistently outperforms existing state-of-the-art methods, particularly un-11
der conditions of heavy occlusion and degraded visibility. These results highlight the importance12
of cooperative perception and adaptive feature fusion in improving robustness and accuracy of13
3D detection. Future work will explore the extension of this framework to more diverse sensor14
modalities and real-time deployment in large-scale autonomous driving systems.15
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