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ABSTRACT1
The integration of the global navigation satellite system (GNSS) and inertial navigation system2
(INS) based on factor graph optimization (FGO) holds significant potential for achieving accurate3
and robust vehicle localization. However, in complex environments, the uncertainty of GNSS mea-4
surement noise severely affects the accuracy of state estimation in FGO. To address this problem,5
an adaptive FGO integrated navigation framework based on innovation-based adaptive estimation6
(IAE) is proposed. First, inertial measurement unit (IMU) preintegration factor, GNSS positioning7
factor, and prior factor are constructed for FGO. Then, an IAE-based approach, which estimates8
the GNSS measurement noise covariance matrix (MNCM) using innovations within a sliding time9
window, is introduced into the FGO framework to enable simultaneous estimation of vehicle states10
and measurement noise. To further enhance the accuracy of measurement noise estimation and the11
adaptability to varying conditions, a strategy based on innovation variance is adopted to dynami-12
cally adjust the size of the window for covariance estimation. The proposed method is evaluated13
through numerical simulations and real-world experiments. The experimental results demonstrate14
the effectiveness of the proposed approach in enhancing localization accuracy by accurately esti-15
mating time-varying GNSS measurement noise.16

17
Keywords: Vehicle localization, global navigation satellite system (GNSS)/inertial navigation sys-18
tem (INS), factor graph optimization (FGO), innovation-based adaptive estimation (IAE)19
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INTRODUCTION1
An accurate and reliable positioning system is critical for connected and autonomous vehi-2

cles (CAVs) (1, 2). On one hand, the positioning system provides the vehicle’s location informa-3
tion, serving as the foundation for high-level decision-making and path planning tasks; on the other4
hand, by continuously updating the vehicle’s position and perception data, the positioning system5
enables efficient interaction between the vehicle and its external environment (such as other vehi-6
cles, infrastructure, and cloud systems), ensuring the safety and stability of autonomous driving7
(3–5).8

Due to the complementary advantages of the global navigation satellite system (GNSS) and9
the inertial navigation system (INS), the GNSS/INS integrated navigation system is widely used10
for positioning in CAVs (6–8). Traditional GNSS/INS integration is mostly based on the extended11
Kalman filter (EKF) (9), as well as more advanced filters that better handle nonlinearity, such as12
the unscented Kalman filter (UKF) (10), cubature Kalman filter (CKF) (11), and particle filter (PF)13
(12). In recent years, with the advancement of computing power, state estimation methods based on14
factor graph optimization (FGO) have become a research hotspot (13). FGO iteratively optimizes15
historical and current information in the form of factors to find the optimal state estimate, and16
when applied to integrated navigation, it often achieves higher positioning accuracy than traditional17
filtering methods (14, 15). In addition, the FGO framework offers high flexibility, enabling plug-18
and-play integration of sensor measurements, which makes it well-suited for multi-sensor fusion-19
based localization (16).20

At its core, FGO estimates system states by minimizing a weighted error function, where21
the weights are determined by the covariance matrices of the observation noise. Therefore, the22
GNSS measurement error model directly affects the final integrated localization results of GNSS/INS23
(17). In most cases, the GNSS measurement error model is defined based on experiments or em-24
pirical knowledge (18). However, in real-world environments, GNSS measurements often exhibit25
time-varying characteristics, making it difficult to obtain an accurate error model (19, 20).26

Currently, robust FGO methods for handling measurement noise uncertainty mainly in-27
clude graph-based methods (21, 22) and M-estimators (23, 24). Graph-based methods enhance the28
robustness of the FGO by adding additional measurement constraints into the optimization process.29
Suenderhauf et al. (25) introduced Switch Constraints (SC) in FGO, which define an observation30
weighting function based on switch variables that dynamically adjust the weight of measurements31
according to the Mahalanobis distance between predicted and actual observations. This approach32
significantly improves localization accuracy in the presence of GNSS multipath measurements.33
Agarwal et al. (22) proposed an improved SC method called Dynamic Covariance Scaling (DCS),34
where the switch variables are removed from the optimization process and calculated separately35
using the residual, current measurement uncertainty, and prior switch uncertainty. After calcula-36
tion, the information matrix associated with the GNSS observation factor is scaled accordingly.37
In addition to the aforementioned graph-based robust FGO methods, M-estimators-based methods38
are also widely used to handle measurement uncertainty in FGO. Unlike graph-based methods,39
M-estimators are based on the principle of maximum likelihood, where robust loss functions are40
introduced to reduce the weights of outlier measurements, thereby improving localization accu-41
racy. Qin et al. (26) employed the Huber loss function to distinguish measurement outliers in a42
factor graph-based tightly coupled integrated navigation system, thereby enhancing the robustness43
of the system. Zhou et al. (24) combined M-estimator with chi-squared test to construct a scal-44
ing factor for adjusting GNSS measurement error covariance, thereby establishing a robust FGO45
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framework that effectively handles outliers and time-varying measurement noise in complex en-1
vironments. Although existing robust FGO methods can partially address the measurement2
anomalies of GNSS signals, they lack the ability to estimate GNSS measurement noise and3
are ineffective in dealing with the time-varying characteristics of GNSS measurement noise.4

To address this limitation, we propose an adaptive FGO framework for GNSS/INS5
integration with time-varying measurement noise estimation. First, inertial measurement unit6
(IMU) preintegration factor, GNSS positioning factor, and prior factor are constructed for FGO.7
Then, we incorporate an innovation-based adaptive estimation (IAE) method into the FGO frame-8
work, where the GNSS measurement noise covariance matrix (MNCM) is estimated from innova-9
tions within a sliding time window, to jointly estimate the system states and measurement noise.10
Furthermore, to improve the robustness and accuracy of noise estimation under varying conditions,11
the window size for covariance estimation is dynamically adjusted according to the innovation12
variance. In this way, the proposed method enables joint estimation of navigation states and GNSS13
measurement noise, thereby improving the accuracy of GNSS/INS integrated localization. The14
main contributions of this paper can be summarized as follows:15

1. A measurement noise estimation method based on IAE is introduced into the FGO frame-16
work to jointly estimate the system states and the GNSS MNCM, thereby improving the17
localization accuracy of FGO-based GNSS/INS integrated navigation system.18

2. A strategy based on innovation variance is proposed to dynamically adjust the window size19
for covariance estimation, enhancing both the robustness and accuracy of GNSS measure-20
ment noise estimation.21

3. Extensive experiments in the form of both numerical simulations and real-world tests22
are conducted. Experimental results demonstrate that the proposed adaptive FGO algo-23
rithm with measurement noise estimation significantly enhances the positioning accuracy24
of GNSS/INS integrated navigation.25
The remainder of this paper is organized as follows. First, an FGO-based GNSS/INS in-26

tegrated navigation system is given. Next, details on the IAE-based adaptive FGO method are27
provided. Then, the experimental results are presented. Finally, the conclusion and future work28
are discussed.29

FGO-BASED GNSS/INS INTEGRATED NAVIGATION SYSTEM30
The objective of multi-sensor information fusion is to compute the maximum a posteriori31

(MAP) probability of the system state given all available sensor measurements. In this study, the32
measurement information includes GNSS measurements and IMU measurements. The GNSS/INS33
integrated navigation problem can be represented as follows:34

x∗ = argmax
x ∏

k
P(zsensor

k |xk)∏
k

P(xk|xk−1) (1)35

36

where x∗ denotes the optimal state estimation, zsensor
k is the measurement value from sensors at time37

k, and xk and xk−1 denote the system state at times k and k−1, respectively.38
To obtain the solution to (1), Bayesian filtering adopts a first-order Markov model, estimat-39

ing the current state based on the previous state and the current observations. In contrast, FGO40
transforms this problem into a nonlinear optimization problem through the structure of the factor41
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graph. In FGO, all sensor measurements are treated as constraints associated with specific states1
(27). In this context, the MAP problem can be expressed as follows:2

x∗ = argmax
x ∏

i
fi(xi) (2)3

4

where fi denotes the factor associated with the measurement information. Assuming that the noise5
from all sensors follows Gaussian distributions, fi can be expressed as follows:6

fi(xi) ∝ exp
(
−∥hi(xi)− zsensor

i ∥2
Σi

)
(3)7

8

where hi(·) denotes the observation equation, whose specific form depends on the particular model,9
and Σi is the noise covariance matrix of the corresponding sensor. The MAP problem in (1) can be10
further transformed as follows:11

x∗ = argmax
x

(
∑

i
∥hi(xi)− zsensor

i ∥2
Σi

)
. (4)12

13

The state xk in this study is defined as follows:14

xk =
[

pw
wbk

,vw
wbk

,qw
wbk

,bgk ,bak

]T
(5)15

16

where the superscript w denotes the world frame (w-frame), which is defined at the initial position17
of the navigation system in the north-east-down (NED) coordinate system, the subscript b denotes18
the body frame (b-frame), pw

wbk
, vw

wbk
, and qw

wbk
represent the position, velocity, and rotation of19

the b-frame with respect to the w-frame expressed in the w-frame, respectively, and bgk and bak20
represent the gyroscope and accelerometer biases, respectively.21

In the factor graph, adjacent states are connected by IMU preintegration factors, which22
model the evolution of the system state over time. GNSS positioning factors are linked to each23
state node to provide absolute position constraints, effectively correcting the drift inherent in INS.24
To limit the size of the optimization problem, marginalization is applied, which introduces prior25
factors that transfer historical information constraints into the current optimization window. In the26
following sections, we will detail the specific form of each factor.27

IMU Preintegration Factor28
In general, the sampling frequency of the IMU is much higher than that of the GNSS. To29

avoid repeatedly integrating the high-frequency IMU data during optimization, the IMU measure-30
ments within each GNSS sampling interval are typically preintegrated. This approach effectively31
improves the optimization efficiency of the integrated navigation.32
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The IMU measurement model can be expressed as follows:1 {
ω̃

b
ib = ωb

ib +bg +ng

f̃ b
= f b +ba +na

(6)2

3

where the subscript i denotes the inertial frame (i-frame), ω̃
b
ib and f̃ b are the measured angular rate4

of the b-frame relative to the i-frame expressed in the b-frame and the measured specific force,5
respectively, ωb

ib and f b are the true angular rate of the b-frame relative to the i-frame expressed6
in the b-frame and the true specific force, respectively, bg and ba represent the gyroscope and7
accelerometer biases, respectively, and ng and na represent the gyroscope and accelerometer white8
noise, respectively.9

Based on the IMU measurements, the angular and velocity increments between consecutive10
IMU samples can be expressed as follows:11 {

∆θ m =
∫ tm

tm−1
ω̂

b
ib dt

∆vb
f ,m =

∫ tm
tm−1

f̂
b

dt
(7)12

13

where ω̂
b
ib and f̂

b represent the angular rate and specific force after compensating for the estimated14

gyroscope bias b̂g and accelerometer bias b̂a, respectively, ω̂
b
ib = ω̃

b
ib− b̂g, and f̂

b
= f̃ b− b̂a.15

The motion integration equations can be expressed as follows:16 
qw

wb(tm)
= qw

wb(tm−1)
⊗q∆θ m

vw
wb(tm)

= vw
wb(tm−1)

+Rw
wb(tm−1)

∆vb
f ,m +gw∆ tm−1,m

pw
wb(tm)

= pw
wb(tm−1)

+ vw
wb(tm−1)

∆ tm−1,m + 1
2

(
Rw

wb(tm−1)
∆vb

f ,m +gw
)

∆ tm−1,m

(8)17

18

where the subscripts tm and tm−1 represent the IMU sampling times, ∆ tm−1,m = tm− tm−1, q∆θ m
is19

the quaternion for the incremental angle ∆θ m, pw
wb, vw

wb, and qw
wb represent the position, velocity,20

and rotation of the b-frame with respect to the w-frame expressed in the w-frame, respectively, Rw
wb21

is the rotation matrix from b-frame to w-frame expressed in the w-frame, gw is the gravitational22
acceleration, and ⊗ denotes quaternion multiplication.23

By integrating the IMU measurements over the GNSS sampling interval using (8), the IMU24
preintegration measurements can be obtained as follows:25


qPre

k−1,k = ∏m∈[k−1,k] q∆θ m

vPre
k−1,k = ∑m∈[k−1,k]

(
Rw

wb(tm−1)
∆vb

f ,m +gw∆ tm−1,m

)
pPre

k−1,k = ∑m∈[k−1,k]

(
vw

wb(tm−1)
∆ tm−1,m + 1

2Rw
wb(tm−1)

∆vb
f ,m∆ tm−1,m + 1

2gw∆ tm−1,m

) (9)26

27

where qPre
k−1,k, vPre

k−1,k, and pPre
k−1,k denote the attitude preintegration, velocity preintegration, and28
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position preintegration from time k−1 to time k, respectively.1
Based on the above derivation, the IMU preintegration residual, i.e., the IMU preintegration2

factor, can be computed as follows:3

rPre(ẑPre
k−1,k,X) =



pw
wbk
− pw

wbk−1
− vw

wbk−1
∆tk−1,k− 1

2gw∆t2
k−1,k−Rw

bk−1
pPre

k−1,k
vw

wbk
− vw

wbk−1
−gw∆tk−1,k−Rw

bk−1
vPre

k−1,k

2
[(

qw
bk−1

)−1
⊗qw

bk
⊗
(

qPre
k−1,k

)−1
]

v
bgk−bgk−1

bak−bak−1


(10)4

5

where 2 [•]v is the algorithm to extract the rotation vector from a quaternion.6
The covariance matrix Σ

Pre
k−1,m of the IMU preintegration factor can be propagated from the7

initial covariance Σ
Pre
k−1,k−1 = 0 as follows:8

Σ
Pre
k−1,m = ΦmΣ

Pre
k−1,m−1Φ

T
m +Qm (11)9

10

where Φm ≈ I+F tm−1∆ tm−1,m, F tm−1 is the dynamics matrix, Qm ≈Gtm−1Qtm−1
GT

tm−1
∆ tm−1,m, Gtm−111

is the noise-input mapping matrix, and Qtm−1
is the noise covariance matrix.12

GNSS Positioning Factor13
The position output from the GNSS receiver in the geographic frame ẑGNSS

k can be trans-14
formed into the w-frame. Considering the lever-arm effect, the GNSS positioning factor can be15
formulated as follows:16

rGNSS

(
ẑGNSS

k ,X
)
= pw

wbk
+Rw

wbk
lb
GNSS− p̂w

k (12)17

18

where lb
GNSS is the GNSS antenna lever-arm expressed in the b-frame, p̂w

k is the position of ẑGNSS
k19

transformed from the geographic frame to the w-frame.20

Prior Factor and Sliding Window Optimization21
Given the IMU preintegration factor and GNSS positioning factor, the GNSS/INS inte-22

grated localization problem can be formulated as a MAP problem as shown in (4). As time pro-23
gresses, the size of the factor graph increases, which leads to a slower optimization process. To24
limit the size of the factor graph, a sliding window approach is employed to constrain the number25
of epochs involved in the optimization. When the number of epochs exceeds the window size, the26
factors from the earliest epoch are marginalized, and the historical information is incorporated into27
the current optimization window in the form of prior factors. More details on the marginalization28
can be found in (28). By combining the IMU preintegration factor, GNSS positioning factor, and29
prior factor, the objective function to be optimized is constructed as follows:30
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min
X

{∥∥rp−H pX
∥∥2

+ ∑
k∈[1, j]

∥∥∥rPre

(
ẑPre

k−1,k,X
)∥∥∥2

Σ
Pre
k−1,k

+ ∑
i∈[0,g]

∥∥∥rGNSS

(
ẑGNSS

i ,X
)∥∥∥2

Σ
GNSS
i

}
(13)1

2

where
{

rp,H pX
}

represents the prior information from the marginalization,
∥∥rp−H pX

∥∥2 is the3
prior factor, j is the number of IMU preintegration factors, and g+ 1 (g ≤ j) is the number of4
GNSS positioning factors. Σ

GNSS
k is the covariance matrix of GNSS position measurements. Its5

estimation process will be detailed in the next section.6

IAE-BASED ADAPTIVE FGO7
To enable simultaneous estimation of system states and GNSS measurement noise, we8

propose an adaptive FGO framework based on IAE. This method leverages the statistical charac-9
teristics of the innovation sequence within a sliding time window to estimate the GNSS MNCM,10
which is then integrated into the FGO framework to enhance pose estimation accuracy. To further11
enhance the accuracy and robustness of measurement noise estimation, we dynamically adjust the12
size of the sliding window used for covariance estimation based on the innovation variance.13

IAE-Based Noise Covariance Estimation14
The GNSS MNCM Rk is estimated using an innovation-based approach, which leverages15

the innovation sequence to capture time-varying noise characteristics. The innovation at time step16
k is defined as follows:17

νk = zk−Hkx̂k|k−1 (14)18

19

where zk refers to the GNSS measurement at time step k, Hk is the Jacobian matrix of the GNSS20
measurement function, and x̂k|k−1 is the predicted state vector, obtained from the previous state21
and the IMU preintegration. The innovation covariance Sk is theoretically given by22

Sk = HkPk|k−1HT
k +Rk (15)23

24

where Pk|k−1 is the prior state covariance, which comes from the inverse of the information matrix25
H p in the marginalization operation. An empirical estimate of Sk can also be obtained over a26
window of Mk innovations as follows:27

Ŝk =
1

Mk

k

∑
i=k−Mk+1

ν iν
⊤
i . (16)28

29

The measurement noise covariance is then estimated as follows:30
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R̂k = Ŝk−HkPk|k−1HT
k . (17)1

2

In practical scenarios, GNSS noise typically changes slowly. Considering this characteris-3
tic of GNSS noise, a forgetting factor α is used to assign certain weight to historical data, i.e.:4

R̂k← (1−α)R̂k−1 +αR̂k (18)5

6

where α can be set empirically. In this study, α is set to 0.9.7

Adaptive Window Size Adjustment8
Unlike traditional methods with fixed window size for covariance estimation in IAE, we9

propose a strategy that adjusts Mk online based on the innovation variance. The innovation variance10
is computed as follows:11

var(ν) =
1
n

n

∑
i=1
∥ν i− ν̄∥2

2 (19)12

13

where n is the number of innovations in the window for covariance estimation, and ν̄ is the mean14
innovation.15

Based on (19), it is evident that the larger the variance of ν , the greater the fluctuation in16
GNSS data quality within the window. To more accurately reflect the noise characteristics of the17
data, a larger window is required to compute its statistical features. Conversely, when the ν is18
smaller, it indicates that the GNSS data quality fluctuates less within the window. In this case,19
considering computational efficiency, a smaller window can be used to compute the statistical20
features. The window size Mk is adjusted according to the following rule:21

Mk =


Mmax if var(ν)> νmax
1
2(Mmax +Mmin) if νmin < var(ν)≤ νmax

Mmin if var(ν)≤ νmin

(20)22

23

where Mmax, Mmin, νmax, and νmin are the predefined maximum and minimum values of the win-24
dow size and the variance, respectively. The settings of νmax and νmin should take into account the25
quality of the GNSS receiver and external environmental factors that may affect GNSS measure-26
ment quality. Mmin should be sufficient to capture the statistical characteristics of the measurement27
data, while Mmax should be set with consideration for computational resource limitations.28

Compared to standard IAE method, where the window size remains constant through-29
out the estimation process, the proposed approach requires additional calculations for adjust-30
ing the window size based on the variance of the innovation sequence. However, the computa-31
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tional overhead introduced by this adaptive strategy is relatively moderate. The calculation1
of the innovation variance and the adjustment of the window size primarily involve simple2
arithmetic operations and are performed at each step in the process. These operations can3
be computed efficiently, especially when the window size adjustment is not highly dynamic.4
The key benefit is that the adaptive window allows for a more accurate reflection of GNSS5
noise characteristics, leading to improved pose estimation accuracy, which can justify the6
additional computational cost. Moreover, the adaptive strategy ensures that the size of the7
window is tailored to the quality of the GNSS measurements, which can also enhance com-8
putational efficiency by reducing the window size when the GNSS data quality is consistent.9
This results in fewer data points being processed for covariance estimation in high-quality10
data scenarios, thereby reducing the overall computational load.11

EXPERIMENTAL RESULTS12
To sufficiently validate the effectiveness of the proposed method, numerical simulations13

and real-world tests are conducted. In this section, we provide a detailed description of the experi-14
mental setups and corresponding results.15

Numerical Simulations16
To evaluate the proposed adaptive FGO method for estimating time-varying GNSS mea-17

surement noise, a vehicle simulation trajectory is designed. The simulation lasts for 320 seconds,18
during which the GNSS measurement noise covariance is set to diag(100m2,100m2) between 16019
and 240 seconds, and diag(1m2,1m2) for the remaining periods. The GNSS sampling rate is 120
Hz, and the IMU parameters are listed in Table 1. The maximum window size Mmax is set to 20,21
and the minimum window size Mmin is set to 10.22

To demonstrate the superiority of the proposed adaptive FGO based on IAE (IAE-FGO)23
in estimating GNSS measurement noise, we compare it with the estimation results obtained from24
adaptive filtering methods based on Sage-Husa (29) (Sage-Husa-Filter) and IAE (30) (IAE-Filter).25
In addition, to validate the effectiveness of the adaptive window size adjustment strategy proposed26
in this paper, we also provide the results of the FGO based on the IAE method with a fixed window27
size (IAE-FGO-Fix). The GNSS noise standard deviation estimates from different algorithms are28
shown in Figure 1. The root mean square error (RMSE) is used to measure the difference between29
estimated results and the ground truth, which is defined as follows:30

RMSE =

√
1
n

n

∑
i=1

(ŷi− yi)2 (21)31

32

where ŷi is the output of the localization algorithm, yi is the ground truth, and n is the total number33
of data. The RMSE of GNSS measurement noise standard deviation for different algorithms are34
summarized in Table 2.35

It is evident that when the GNSS measurement noise remains constant, the Sage-Husa-36
based method can reliably estimate the measurement noise covariance. However, when the GNSS37
measurement noise varies, the Sage-Husa method struggles to track these changes. The methods38
based on IAE are capable of estimating time-varying GNSS measurement noise. The GNSS mea-39
surement noise estimation based on FGO achieves higher accuracy than that based on filtering.40



Mao, Wang, and Fu 11

This is because FGO jointly optimizes a larger amount of historical information, leading to more1
accurate state estimation. As a result, the innovations are more precise, which in turn improves the2
estimation accuracy of the GNSS MNCM. By adaptively adjusting the window size for covariance3
estimation, the estimation accuracy of the GNSS MNCM can be further improved. According to4
Table 2, compared to IAE-FGO-Fix, the IAE-FGO method reduces the RMSE of the GNSS mea-5
surement noise standard deviation by 6.25% in the east direction and 21.90% in the north direction,6
respectively.7

TABLE 1 Specifications of IMU

Parameters Unit Value
Sample Rate Hz 100
Gyro Bias Stability °/h 8
Gyro Random Walk °/

√
h 0.4

Accelerometer Bias Stability µg 30
Velocity Random Walk m/s/

√
h 0.02

Figure 1 GNSS measurement noise standard deviation estimated by different algorithms.

Real-World Tests8
To validate the effectiveness of the proposed positioning method in real-world scenarios,9

we set up a data acquisition experimental platform as shown in Figure 2. The platform includes a10
GNSS receiver (Topgnss, GNSS 100G) and an integrated navigation system (Xsens, MTi-680G).11
The integrated navigation system is mounted on the internal platform in the trunk of the vehicle,12
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TABLE 2 RMSE (m) of GNSS Measurement Noise Standard Deviation for Different Algo-
rithms

Orientation Sage-Husa-Filter IAE-Filter IAE-FGO-Fix IAE-FGO
East 3.65 1.86 1.28 1.20

North 3.55 1.65 1.37 1.07

while the GNSS receiver is mounted on the roof of the vehicle. The system combines IMU and1
real-time kinematic (RTK) to provide reference data. The GNSS sampling frequency is 1 Hz,2
while the IMU operates at a frequency of 100 Hz. The bias stability of the gyroscopes and the3
accelerometers are 8 °/h and 15 µg, respectively, and the random walk of the gyroscopes and the4
velocity are 0.17 °/

√
h and 0.02 m/s/

√
h, respectively. Screenshots of the real-world experimental5

environment are shown in Figure 3.6
To illustrate the superiority of the proposed method (IAE-FGO) in state estimation7

accuracy, the robust FGO algorithm based on the Huber function (Huber-FGO) (31), the8
traditional FGO algorithm (32) and EKF (14) are used for comparison. Figure 4 shows the9
trajectory comparison of different algorithms. Figure 5 displays the positioning errors in the north,10
east, and down directions for different algorithms. The mean absolute positioning error (Mean11
Abs. Pos. Error), the maximum absolute positioning error (Max. Abs. Pos. Error), and the RMSE12
of the positioning results along different coordinate directions for different algorithms are reported13
in Table 3.14

It is clearly evident that among the three positioning algorithms, FGO outperforms EKF in15
terms of positioning accuracy. This is because EKF only considers the state at the previous time16
step and the current measurements when performing state estimation, whereas FGO optimizes all17
states within the sliding optimization window to obtain the optimal value for the current state.18
By introducing the Huber function, Huber-FGO improves the robustness of the traditional19
FGO in handling outliers or noisy data, thereby enhancing the accuracy of state estimation.20
The positioning accuracy achieved by the proposed IAE-FGO is the highest. This is because21
IAE-FGO can simultaneously estimate both the state and GNSS measurement noise, thereby22
achieving better state estimation results. According to Table 3, the RMSE of IAE-FGO’s23
positioning results in the north, east, and down directions has improved by 17.64 %, 12.73 %,24
and 5.71 %, compared to Huber-FGO, respectively.25

CONCLUSION AND FUTURE WORK26
This paper proposed an adaptive FGO framework based on IAE to address the challenge27

of GNSS measurement noise uncertainty in GNSS/INS integrated navigation system. First, the28
IMU preintegration factor, GNSS positioning factor, and prior factor were constructed for FGO.29
Then, the IAE method was incorporated into the FGO framework to allow for the simultaneous30
estimation of both states and the GNSS MNCM. To further improve the accuracy of measurement31
noise estimation and enhance adaptability to varying conditions, this work introduced a dynamic32
window adjustment strategy, which leveraged the variance of the innovation to dynamically adjust33
the window size for covariance estimation. Numerical simulations and real-world experiments val-34
idated the superiority of the proposed method. Specifically, in real-world experimental scenarios,35
the proposed method outperformed existing robust FGO, with positioning RMSE improvements in36
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Integrated 

Navigation 

Module
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Figure 2 Experimental platform.

Figure 3 Screenshots of the real-world experimental environment.

the north, east, and down directions by 17.64%, 12.73%, and 5.71%, respectively.1
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Figure 4 Trajectory comparison of different algorithms.

Figure 5 Positioning errors in the north, east, and down directions for different algorithms.

However, the method proposed in this paper also has its limitations. The IAE method1
estimates GNSS measurement noise based on data within a historical time window. In scenarios2
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TABLE 3 Performance of Different Algorithms

Method Orientation Mean Abs. Pos. Error (m) Max. Abs. Pos. Error (m) RMSE (m)
North 0.75 2.59 0.96

EKF East 0.55 2.39 0.74
Down 0.75 1.55 0.75
North 0.62 2.19 0.77

FGO East 0.51 2.04 0.65
Down 0.63 1.66 0.73
North 0.56 2.06 0.68

Huber-FGO East 0.46 1.96 0.55
Down 0.60 1.58 0.70
North 0.43 1.62 0.56

IAE-FGO East 0.38 1.66 0.48
Down 0.54 1.43 0.66

where GNSS measurement quality changes rapidly, this may lead to tracking delays. Enhancing1
the algorithm’s ability to track noise variations more promptly will be a key focus of our future2
research.3
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