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Abstract— While traditional domain adaptation methods have
yielded satisfactory outcomes in vehicle re-identification on
established datasets, they typically operate within a centralized
framework. This approach falls short in addressing the challenges
of large-scale cross-domain adaptation encountered in real-
world traffic networks, and often overlooks the computational
constraints of roadside units. In response, we introduce a
federated learning-based distributed framework for unsupervised
domain adaptive vehicle re-identification, structured in three
stages: local model processing, dynamic model aggregation,
and aggregated model downloading. Initially, diverse local re-
identification models are trained independently within edge
computing units. For unlabeled target data, we employ a novel
clustering technique that averages features from multiple local
models to generate pseudo labels. The framework’s second
stage incorporates a historical accumulation strategy to retain
and utilize the knowledge from local models, ensuring effective
adaptation. Additionally, we propose a weight regularization
approach for dynamic model aggregation, significantly boosting
the framework’s discriminative capabilities. Our methodology,
tested on the VeRi-776 and VehicleID datasets, showcases marked
improvements in the discriminative performance of domain
adaptive vehicle re-identification models, affirming the efficacy
of our approach.

Index Terms— Federated learning, domain adaptation, deep
learning, vehicle re-identification, smart city.

I. INTRODUCTION

VEHICLE re-identification (re-ID), which is crucial for
intelligent transportation system (ITS) and smart city

applications [1], aims to match vehicles across different
camera views. Although license plate recognition is a
common approach [2], [3], [4], visual features offer a more
tamper-resistant identifier. Deep learning has significantly
advanced vehicle re-ID, with a primary focus on supervised,
unsupervised, and domain adaptation techniques.
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The majority of supervised learning based vehicle re-
ID methods focus on robust and effective feature learning,
such as fusing multiple features extracted from different
networks [5], [6], [7], [8], exploring discriminative information
in part features [9], [10], [11], [12]. These methods have
shown excellent performance by leveraging vehicle identity
annotations, but are limited by the need for large amounts
of annotated data. Hence, some works adopt unsupervised
learning instead of supervised learning to tackle the vehicle
re-ID task. The main idea of the unsupervised learning method
is to utilize pseudo-label generation techniques for unlabeled
vehicle samples to train a re-ID model, such as clustering [13],
[14], [15]. Although these methods can overcome the
difficult circumstances where the number of annotations is
limited, they suffers from poor generalization ability. That
is, an unsupervised learning-based model performs well on
a particular dataset, but its accuracy inevitably drops when
applied to a more general dataset.

Unsupervised domain adaptive (UDA) re-ID methods,
efficiently addressing the aforementioned problem, have been
widely proposed in recent years [16], [17], [18], [19]. These
methods represent a key approach in transfer learning, utilizing
samples from the source domain to enhance performance on
unlabeled target-domain datasets. Through domain adaptation,
the model’s generalization capability can be significantly
improved.

However, there still remains two challenges for UDA vehicle
re-ID:

• Multiple large cross-domain gaps: The significant
differences in feature distribution across datasets from
various traffic cameras create multiple large domain gaps.
These gaps, exacerbated by different camera resolutions
and locations, make it challenging for models to learn
a feature representation that performs well across both
source and target domains. Handling multiple such gaps
can lead to underperformance, even in trained models.

• Centralized setting issues: Traditional vehicle re-ID
methods operate in a centralized setting, where vast
amounts of image data from numerous cameras are sent
to a central server. This approach results in substantial
bandwidth usage, delays, and raises privacy concerns due
to all data being stored in one location. Additionally, it is
not well-suited for multi-domain adaptation, a necessity
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for effective vehicle re-ID in real-world scenarios, and
struggles to scale as more cameras are added, leading
to performance drops. These issues have been largely
overlooked in domain adaptive vehicle re-ID research.

Federated learning, an emerging and promising paradigm
in distributed machine learning, has garnered significant
interest [20]. The basic idea of federated learning is to train a
model on decentralized data from multiple devices or locations
without requiring data to be centralized on a single server.
Federated learning reduces data transfer, protects local data
privacy, and improves model generalization by learning from
diverse data sources, offering a scalable and adaptable solution
for large traffic networks.

However, integrating the federated learning framework into
UDA for re-ID is far from straightforward:

• Label dependency: Federated learning typically relies
on labeled data for training, but in UDA tasks, target-
domain data often lacks labels. This discrepancy poses
a significant challenge for applying federated learning to
UDA re-ID tasks.

• Historical knowledge ignoration: In federated learning,
the computational workload is predominantly shifted to
the main server, and local data remains at the edge
computing units to maintain privacy. This setup implies
that the domain adaptation process in the main server
relies solely on the local models received in the current
iteration, without access to any historical model data. This
lack of access to temporal information could potentially
hinder the adaptation process, as the server might miss
out on valuable insights from the models’ evolution over
time, which are crucial for accurately bridging the domain
gaps.

• Simple model aggregation: Common federated learning
aggregation strategies, such as FedAvg [21], treat all
client models equally, regardless of their performance.
This approach can be problematic in UDA re-ID, where
different source-domain datasets may lead to varying
levels of recognition performance across re-ID models.

To address these challenges, we introduce a novel three-
stage unsupervised domain adaptive vehicle re-ID framework
that encompasses local model processing, dynamic model
aggregation, and aggregated model deployment. Our approach
is particularly innovative in the dynamic model aggregation
stage, where domain adaptation and local model integration
are concurrently executed. Firstly, to counter the absence
of labels in the target dataset, we generate pseudo labels
by predicting the average clustering features derived from
multiple pre-trained source-domain re-ID models. Secondly,
we incorporate a historical accumulation strategy during
the domain adaptation phase. This strategy aims to retain
the knowledge accumulated by local models from previous
iterations, facilitating predictions that guide the learning of
other models. Thirdly, we introduce a weight regularization
strategy for dynamic aggregation within our federated vehicle
re-ID framework. This strategy assigns differential weights to
models based on their feature clustering performance, thereby
bolstering the discriminative prowess of the overall framework.

The contributions of this paper can be summarized as
follows:

• We firstly propose a three-stage federated learning
framework for unsupervised domain adaptation vehicle
re-ID. This approach enables re-ID models to be trained
locally on data from individual cameras, and then
combines them in a central server while achieving domain
adaptation across cameras.

• Our work advances federated learning by introducing
a unique pseudo labeling technique through average
feature clustering, incorporating historical accumulation
strategy to preserve and utilize historical knowledge,
and implementing a weight regularization strategy for
dynamic aggregation, all of which collectively enhance
the discriminative capability of the system.

• Our proposed framework, rigorously tested on the
VeRi-776 and VehicleID benchmark datasets, showcases
competitive performance, achieving notable gains over
existing domain adaptation-based vehicle re-ID methods.

II. RELATED WORK

A. Vehicle Re-Identification

To obtain an optimal performance on the existing datasets,
many deep learning based vehicle re-ID algorithms adopt
supervised learning to train models. For instance, Liu et al.
proposed FACT [5] combines traditional features [6] with
GoogleNet [22] features, BOW-SIFT [23] and BOW-CN [24]
features to form more robust features that can enhance the
recognition capability of the re-ID model. The progressive
vehicle re-ID method proposed in [7] integrates Null Foley-
Sammon Transform (NFST) [25] into FACT algorithm for
deeper feature extraction and fusion. To address viewpoint
variations that can affect the appearance of vehicles,
Zhu et al. [26] proposed a quadruple directional deep learning
networks to represent features of the vehicle from multiple
directions. In order to better explore latent viewpoints,
Chu et al. [27] proposed a metric learning based viewpoint-
aware method for vehicle re-ID to respectively learn similar
viewpoint metrics and different viewpoint metrics. Their
method can greatly improve the re-ID accuracy by training
with constraints for within-space and cross-space.

However, supervised learning requires a large number
of annotations, making it both labor-intensive and time-
consuming. As an alternative, unsupervised learning has
emerged as a better choice for vehicle re-ID. These methods
are typically clustering-based iterative learning approaches
that use pseudo-labels generated by clustering extracted
features to train re-ID models. For instance, the VR-PROUD
method proposed in [14] uses K-Means clustering, while the
UDAR method proposed in [16] uses DBSCAN clustering to
obtain reliable pseudo-labels. Apart from the above methods,
a viewpoint-aware clustering algorithm was proposed in [15]
for unsupervised vehicle re-ID. This algorithm uses predicted
viewpoints to cluster training samples in a progressive manner,
thereby facilitating the exploration of relationships between
samples. A triplet network based unsupervised vehicle re-ID
method was proposed in [28], which can close the distance of

Authorized licensed use limited to: Southeast University. Downloaded on November 25,2025 at 02:28:33 UTC from IEEE Xplore.  Restrictions apply. 



14638 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 26, NO. 10, OCTOBER 2025

samples with the same identity while maintaining the distance
of different identities in the feature space by utilizing pairwise
and triplet constraints.

To improve the performance of unsupervised methods on
cross-datasets, researchers have been studying UDA re-ID
methods. Wang and Zeng [17] firstly introduced domain
adaption for unsupervised vehicle re-ID and used Maximum
Mean Discrepancy (MMD) to narrow down the bias between
source domain and target domain. Peng et al. [18] proposed
a domain adaptive vehicle re-ID method named PAL, which
can progressively adapt to target domain from source domain.
In PAL, clustering based pseudo target samples and real
unlabeled samples selected in dynamic sampling are combined
together to make the training faster. Huang et al. [19] proposed
dual domain multi-task model (DDM) to handle the problem
of trivial vehicle appearance differences. The method can
divide the dataset into two domains according to the frequency
of each training sample and use a progressive strategy to
accelerate the training speed. In some studies, Generative
Adversarial Networks (GAN) [29] are used to transfer the style
of an image to other domains, as seen in [30] and [31]. In such
work, vehicle re-ID is achieved by comparing the similarities
and differences in the performance of image samples across
different domains. An embedding adversarial learning network
called EALN is proposed in [32] to enhance the capability
of distinguishing similar vehicles of vehicle re-ID model,
which can generate hard negative samples in an embedding
space. However, most of aforementioned methods utilize a
centralized training mode which are inappropriate for large
datasets in real traffic networks with significant cross-domain
differences. Meanwhile, the issue of computing efficiency is
largely ignored by these methods, which should be considered
when facing real-world scenarios.

B. Federated Learning

Federated Learning was first proposed by Google [33],
which was originally designed to use data distributed across
multiple mobile devices to train machine learning models
while preserving user privacy. Since then, federated learning
has aroused widespread interest among researchers.

Yang et al. [20] introduced comprehensive secure federated
learning frameworks, including horizontal federated learning,
vertical federated learning and federated transfer learning.
In order to apply federated learning to some specific scenarios,
Bonawitz et al. [34] constructed the federated learning
framework on a platform of mobile phones, and proposed
some open issues and future development directions of this
federated learning framework.

Apart from the studies mentioned above, federated learning
has been successfully applied in a variety of tasks, such as
image segmentation [35], [36], [37] and object detection [38],
[39], [40], [41]. Chang et al. [35] proposed the Distributed
Asynchronized Discriminator GAN (AsynDGAN) for health
entity segmentation, which combines federated learning with
GAN. A two-layer federated learning framework for object
detection tasks was introduced in [42]. These frameworks
have been shown to achieve more efficient and accurate

Fig. 1. The proposed federated learning framework for unsupervised domain
adaptive vehicle re-ID.

learning, while ensuring data privacy protection and reducing
communication overhead.

However, federated learning based vehicle re-ID has not
been studied yet. Due to the intra-class difference and inter-
class similarity of vehicles, training of a vehicle re-ID model
usually requires the collection of a large number of images to
a cloud central server in order to achieve a high recognition
accuracy. This usually costs a lot of computation and
communication resources. In addition, because the cameras are
installed in different blocks and at different angles, the amount
of data they collect, the number of vehicles, lighting and other
environmental factors are quite different. It brings about the
problem of data heterogeneity between multiple image sets.

The aforementioned problems can be effectively solved by
applying federated learning to vehicle re-ID. In federated
learning framework, model training is usually performed on
edge devices which collect data from local cameras and
model ensemble is performed in a central server. In this way,
computation can be greatly reduced due to the distributed
training mode, and heterogeneous local models can adapt
to each other by model ensemble. Thus, it is important to
explore the application of federated learning in the field of
vehicle re-ID.

III. THE PROPOSED APPROACH

A. Overall Framework

The proposed vehicle re-ID framework is demonstrated in
Fig. 1, which consists of a central cloud server, several edge
computing units, and a large number of traffic cameras.

In our framework, multiple sets of cameras in the bottom
layer generate raw images as source-domain datasets for
training local re-ID models. Each local source dataset can
be represented as SD =

{(
x s

i , ys
i
)
|
Ns
i=1

}
, where x s

i and
ys

i respectively denotes the i-th sample image and the
corresponding vehicle identity label in the source domain, Ns
is the number of sample images of the source domain dataset.
In particular, we consider one of the local image datasets as
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Fig. 2. Illustration of clustering-based pseudo label generation scheme.
By performing clustering on the extracted average target features, we can
take the cluster IDs as the pseudo target labels to refine the CNN model by
optimizing the identity loss and the triplet loss.

the unlabeled target-domain dataset for other re-ID models
to learn. The target domain dataset is represented as T D ={

x t
i |

Nt
i=1

}
, where each target sample image x t

i has no identity
label. In the middle layer of the framework, multiple low-
cost edge computing units with limited computation ability
are utilized to process vehicle images collected by cameras
in order to train local models. At the top of the framework,
a central server with strong computing power is used to
perform global aggregation for local models to achieve mutual
adaptation.

The pipeline of our proposed vehicle re-ID framework
consists of three stages:

• Local model processing. This stage consists of two steps:
local training and local uploading. Initially, local training
is performed in the edge computing units to reduce
computation. Specifically, heterogeneous local models
are respectively pre-trained by corresponding source-
domain datasets, and retrained by the target-domain
dataset. After local training, each edge computing unit
will upload current local model parameters, feature maps
and predictions on target-domain samples to the server.

• Dynamic model aggregation. In this stage, local
models transmitted from these edge computing units
are dynamically aggregated in the central server to
improve the generalization ability of the model. In order
to enhance the overall recognition accuracy during the
model aggregation, multiple heterogeneous re-ID models
in different domains collaboratively learn from each other
and are ensembled in a weighted way.

• Aggregated model downloading. This stage consists of
two steps: global back-sending and local updating. After
the dynamic aggregation, global model parameters will be
sent back to edge computing units for augmenting local
retraining. Then, each edge computing unit will update its
local model parameters according to the received updates
from the server, and conduct retraining in the target
domain for further adaptation and generalization.

By training according to this pipeline, multiple vehicle re-ID
models from different domains will learn from each other and
the recognition capability can be improved comprehensively.
The algorithm of our proposed method is given in Algorithm 1.

B. Local Training

In our framework, edge computing units handle local
training and uploading. This local training encompasses

two phases: supervised learning in source domains and
unsupervised learning in the target domain. Supervised
learning plays a crucial role, utilizing labeled data to
train our model and establish a fundamental grasp of data
distribution. It equips the model with a precise mapping from
input features to expected outputs. Conversely, unsupervised
learning, particularly through clustering methods, enables our
model to discern the inherent structure in the unlabeled
data of the target domain. By integrating these two learning
approaches, our methodology benefits from the accuracy of
supervised learning while adapting to the target domain’s
intricacies via unsupervised learning.

(1) Supervised learning in source domains. In this
phase of local training, multiple CNN models with different
network architectures are pre-trained on the corresponding
source datasets in edge computing units. For each local
model Mk , a deep neural network is initially trained by
the local source-domain dataset. θk represents the parameters
of model Mk . The pre-trained networks can capture the
training data distribution and their class predictions. Thus,
each input sample image x s

i can be transformed into a feature
representation f (x s

i |θ
k). And the output is the classification

probability p j (x s
i |θ

k) which indicates the probability of image
x s

i belonging to the identity j .
In order to suppress unimportant channel features and

pay more attention to the channel features with the most
information, we add Squeeze-and-Excitation (SE) module [43]
to the original CNNs. By controlling the size of the scale, the
features of vehicles with higher availability can be retained,
and the background features of the image can be weakened,
thereby making the extracted features more directional.

A classification loss Ls
id

(
θk) and a triplet loss Ls

tri
(
θk) are

used to optimize the neural network. For classification loss,
we adopt cross entropy loss with label smoothing to alleviate
the impact brought by wrong annotations, which is defined as

Ls
id(θk) =

1
Ns

Ns∑
i=1

Ms∑
j=1

q j log p j

(
x s

i | θk
)

, (1)

where q j = 1 − σ +
σ

Ms
if j = ys

i , otherwise q j =
σ

Ms
. Ms is

the number of source-domain vehicle identities. σ is a small
constant. In this paper, σ is set as 0.1.

Considering that traditional triplet loss cannot support soft-
label training of multiple networks, we utilize the softmax-
triplet loss [44] which is defined as

Ls
tri

(
θk

)
= −

1
Ns

Ns∑
i=1

logPs
i

(
θk

)
, (2)

where

Ps
i

(
θk

)
=

e∥ f
(
xs

i |θ
k)

− f
(
xs

i−|θk)
∥

e∥ f (xs
i |θ

k)− f
(
xs

i+|θk
)
∥
+ e∥ f (xs

i |θ
k)− f

(
xs

i−|θk
)
∥
. (3)

Here Ps
i
(·) represents the softmax-distance between negative

sample pairs in the source domain. x s
i+ and x s

i− respectively
denote the hardest positive sample and negative sample of the
anchor sample x s

i . ∥ · ∥ represents the L2 distance. Therefore,
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the overall loss can be calculated as

Ls
(
θk

)
= Ls

id

(
θk

)
+ Ls

tri

(
θk

)
. (4)

Through local model pre-training, each local model can well
perform feature extraction and vehicle identity recognition on
sample images in the source domain.

(2) Unsupervised learning in the target domain In
this phase of local training, an unsupervised learning of the
local model on the unlabeled target dataset is performed
to transfer the model from the source domain to the target
domain, thus improving the generalization ability of the local
model. We can obtain the feature representation f (x t

i |θ
k) and

the classification probability p j (x t
i |θ

k) of each target sample
image x t

i by inputting it into the model Mk .
As depicted in Fig. 2, our method utilizes a K-means

clustering-based pseudo label generation scheme, chosen for
its computational efficiency and simplicity, crucial for large-
scale datasets. K-means efficiently handles large data volumes
without sacrificing feature representation quality. Note that,
we set the number of clusters Mt as 500 based on empirical
observations and preliminary tests, optimizing the balance
between granularity and computational manageability. The
process involves four detailed steps:

• Each local model extracts convolutional features, denoted
as f (x t

i |θ
k), from each target-domain sample image x t

i .
• The mean features are computed by averaging the features

extracted by all local models. This step ensures a
consolidated representation of the features.

• Using the K-means clustering algorithm, each local
model clusters the mean features in a mini-batch manner,
effectively grouping the target-domain samples into Mt
distinct clusters or classes.

• Pseudo-labels, represented as Ỹt , are then generated based
on the cluster IDs assigned by the K-means algorithm.

C. Dynamic Aggregation

In our framework, the central server is responsible for
dynamic aggregation and updates back-sending. Aiming to
improve generalization ability of the whole framework,
we adopt collaborative learning among multiple models to
transfer knowledge from one to another in the target domain.
Meanwhile, we introduce two strategies for conducting
collaborative learning including historical accumulation and
weight regularization, which can respectively produce more
reliable pseudo labels and enhance the recognition ability of
the whole framework.

1) Historical Accumulation: In order to transfer knowledge
from one local model to another, the current class predictions
can serve as soft pseudo labels to supervise other models [45].
However, directly using the current class predictions as
soft pseudo labels will cause the predictions of different
networks to converge to equal each other, which might
lead to a reduction of output independences between
different networks. Also, it will additionally cause an error
amplification if using wrong classification predictions as
pseudo labels [44]. To mitigate these issues, we introduce
the historical accumulated model for each network, which

preserves more of the model’s initial knowledge. This
approach is used to generate more reliable soft pseudo labels
for mutual supervision, as illustrated in Fig. 3.

More specifically, the parameters of the historical accumu-
lated model of local model Mk at the current iteration T are
denoted as 2k

T , which can be calculated as

2k
T = λ2k

T −1 + (1 − λ) θk, (5)

where 2k
T −1 denotes the historical accumulated parameters

of Mk in the previous iteration (T − 1), the initial historical
accumulated parameters are 2k

0 = θk and λ is the scale factor
in [0, 1). The predictions obtained by historical accumulated
models are more independent, and utilize the historical
accumulated model to generate soft pseudo labels can better
avoid error amplification during training.

a) Mutual identity loss: For each local model Mk , the
soft classification loss for optimizing θk with the soft pseudo
labels generated by model Me can be defined as

L t
mid

(
θk

|θe
)

=
1
Nt

Nt∑
i=1

Mt∑
j=1

p j (x t
i |2

e
T ) log p j (x s

i |θ
k), (6)

where Mt denotes the number of vehicle identities in the target
domain, and Nt denotes the total number of target images.
The mutual identity loss for the local model Mk can then be
defined as the average of all soft classification losses, which
can be calculated as

Lt
mid

(
θk

)
=

1
m − 1

m∑
e ̸=k

Lt
mid

(
θk

|θe
)

, (7)

where m is the number of local models.
b) Mutual triplet loss: For each local model Mk , the

soft softmax-triplet loss for optimizing θk with the soft triplet
labels generated by model Me can be defined as

Lt
str i

(
θk

|θe
)

=
1
Nt

Nt∑
i=1

Lbce(P t
i

(
θk

)
,P t

i

(
2k

)
), (8)

where P t
i (·) represents the softmax-distance between negative

sample pairs in the target domain and Lbce(·) represents the
binary cross entropy function.

The mutual triplet loss for the local model Mk also can be
defined as the average of all soft softmax-triplet losses, which
can be calculated as

Lt
mtri

(
θk

)
=

1
m − 1

m∑
e ̸=k

Lt
mtri

(
θk

|θe
)

. (9)

c) Voting loss: We additionally introduce voting loss
including the identity loss and the triplet loss, which can be
respectively calculated as

Lt
id(θk) =

1
Nt

Nt∑
i=1

Mt∑
j=1

q j log p j

(
x t

i | θk
)

, (10)

Lt
tr i

(
θk

)
= −

1
Nt

Nt∑
i=1

logP t
i

(
θk

)
, (11)
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Fig. 3. An illustration of local uploading and dynamic aggregation. Edge computing units upload current model parameters, feature maps and predictions on
target domain samples to the server. Multiple local models collaboratively learn from each other in the server to enhance the generalization ability. Meanwhile,
soft pseudo labels generated by the historical accumulated model and hard pseudo labels generated by clustering are combined for joint optimization.

where q j = 1 − σ +
σ
Mt

if j = ỹt
i , otherwise q j =

σ
Mt

. And
P t

i
(·) denotes the softmax-distance between negative sample

pairs in the target domain, which is represented as

P t
i

(
θk

)
=

e∥ f
(
x t

i |θ
k)

− f
(
x t

i−|θk)
∥

e∥ f (x t
i |θ

k)− f
(
x t

i+|θk
)
∥
+ e∥ f (x t

i |θ
k)− f

(
x t

i−|θk
)
∥
. (12)

The voting loss can be defined as the sum of the identity loss
and the triplet loss, we have

Lt
vot (θ

k) = Lt
id(θk) + Lt

tr i (θ
k). (13)

d) Overall loss: The individual loss for each local model
can be defined as

Lt
one(θ

k) = Lt
mid(θk) + Lt

mtri (θ
k) + Lt

vot (θ
k). (14)

Therefore, the overall loss is defined as

Lt
=

m∑
k=1

Lt
one(θ

k). (15)

After obtaining the overall loss of the whole framework,
the server sends the updated model parameters back to edge
computing units for local updating.

2) Weight Regularization: we propose a weight regulariza-
tion strategy to accommodate the heterogeneity of multiple
local models. In each iteration, individual model extracts
target-domain sample features f (x |2T ) and performs a
clustering algorithm based on K-means to group all training

samples into Mt clusters as C. Since the discrimination
capability can be indicated by the clustering results, the weight
of each local model can be defined as the ratio of the inter-
cluster scatter and the sum of intra-cluster scatters.

The intra-cluster scatter of the i-th cluster Ci can be
calculated as

Si
intra =

∑
x∈Ci

∥ f (x |2T ) − µi∥
2, (16)

where µi =
∑

x∈Ci
f (x |2T )/ni

t indicates the mean feature of
the cluster Ci in the target domain, and ni

t denotes the number
of features in Ci . The inter-cluster scatter can be calculated as

Sinter =

Mt∑
i=1

ni
t ∥ µi − µ∥

2, (17)

where µ =
∑Nt

i=1 f (xt,i |2T )/Nt indicates the mean feature
of all training target-domain samples. The ratio of the inter-
cluster scatter and the sum of intra-cluster scatters R then can
be defined as

R =
Sinter∑Mt

i=1 Si
intra

. (18)

The model with a better discrimination capability has a larger
scalar ratio R due to the larger inter-cluster scatter or the
smaller intra-cluster scatter compared with other models.
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For dynamic aggregation in the main server, the weight wk

of local model Mk can be defined as the mean normalization
of R, shown as

wk
=

M Rk∑M
i=1 Ri

. (19)

Then, we can respectively re-define the mutual identity loss
in Eq. (7) and the mutual triplet loss in Eq. (9) as

Lt
mid

(
θk

)
=

1
m − 1

m∑
e ̸=k

wkLt
mid

(
θk

|θe
)

, (20)

and

Lt
mtri

(
θk

)
=

1
m − 1

m∑
e ̸=k

wkLt
mtri

(
θk

|θe
)

. (21)

In this way, models with a better discrimination capability
will play more important roles in the current iteration, which
enhances the aggregation and the adaptation among multiple
local models.

Algorithm 1 Federated-Learning-Based Unsupervised
Domain Adaptive Vehicle Re-ID
Require: The number of local models, K ; source domain

datasets, SD = {Xs, Ys}; target domain dataset, T D =

{X t }; maximum iterations T ;
Ensure: Optimized vehicle re-ID models {Mk

}.
1: Pre-train K local models on source datasets.
2: for t = 1 to T do
3: for each edge computing unit r j ∈ R do
4: Extract target features ft by model Mk with θk .
5: Generate hard pseudo labels Ỹt by clustering.
6: Calculate classifying predictions p(X t |θ

k) by local
model Mk with θk .

7: Generate soft labels p(X t |2
k) from historical

accumulated model with 2k
T .

8: Upload model parameters θk , predictions p(X t |θ
k)

and features ft to the server.
9: end for

10: Evaluate the weight {wk
} of each local model via Eq.

(19) in the server.
11: Update parameters {θk

} by optimizing Eq. (15) with
{wk

}.
12: Send back updated parameters {θk

} to edge computing
units.

13: end for
14: return Optimized vehicle re-ID models {Mk

}.

IV. EXPERIMENT

A. Datasets
In order to validate the effectiveness of our proposed

framework, we use two vehicle re-ID benchmark datasets:
1) VeRi-776 [46]: This dataset comprises 50,000 images of

776 vehicles captured by 20 surveillance cameras in various
directions and angles in a real traffic network. Each image is
thoroughly annotated with details like vehicle identity, type,
color, location, time, and camera tag. For training, 37,781
images of 576 vehicles are used, while testing involves 11,579

TABLE I
RESULTS ON VERI-776

images of 200 different vehicles. Additionally, 1,678 images
from the test set are randomly selected as the query set.

2) VehicleID [47]: This dataset, taken from a city
surveillance system during the day, contains 221,763 images
of 26,267 vehicles, with 90,196 images of 10,319 vehicles
labeled with model information. The training set includes
11,585 images of 13,134 vehicles, and the testing set has
111,585 images of 13,133 vehicles. To manage the large
test data volume, four subsets are created: “small” (800
vehicles), “medium” (1,600 vehicles), “large” (2,400 vehicles),
and “huge” (3,200 vehicles). Each subset’s test comprises one
randomly chosen gallery image per vehicle and the remaining
images as the query set.

B. Experimental Details

We respectively take two datasets as source and target
domains for training: In Table I, we use VehicleID as the
source dataset and VeRi-776 as the target dataset; in Table II,
we use VeRi-776 as the source dataset and VehicleID as the
domain dataset.

During the pre-training phase, we strategically selected
three distinct backbone architectures for our branch networks
based on their unique strengths and capabilities. Specifically,
we chose DenseNet-121 for its efficient parameter utilization
and feature reuse capabilities, ResNet-50 for its proven
robustness and ability to address the vanishing gradient
problem through residual connections, and Inception-v3 for
its multi-scale feature extraction and computational efficiency.
Initially, image features are extracted by backbone networks
fused with the attention mechanism. In the training duration,
we resize the input image to 256×128, and perform traditional
image augmentation including random flipping and random
erasing. For each identity from the training set, a mini-batch
is sampled with selected identities and randomly sampled
images to compute the hard batch triplet loss. To optimize
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parameters, the Adam with a weight decay of 0.0005 is
used. We set the initial learning rate as 0.00035. In the total
80 epochs, the learning rate is decreased to 1/10 of its previous
value on the 40th and 70th epoch.

In the training of the target domain, there are 100 iterative
training epochs in total and the learning rate is consistently set
as 0.00035. Each epoch consists of 800 training iterations, and
in each epoch the algorithm conducts a mini-batch clustering
based on 500 clusters. In addition, we use ResNet-50 network
to extract features for testing.

For the performance evaluation on our proposed method,
three metrics are adopted: mean Average Precision (mAP),
rank-1 accuracy and rank-5 accuracy. MAP evaluates
the ability of the model to both correctly identify vehicles
(precision) and to detect as many true instances of the vehicle
as possible (recall) across varying confidence thresholds,
providing an aggregated measure of precision and recall
over all possible levels of confidence. Rank-1 indicates the
proportion of times the true match is ranked first in the list
of candidate matches, providing a focused measure on the
most relevant match. Rank-5 assesses the proportion of times
the true match is within the top 5 ranked candidate matches,
providing a broader perspective on the model’s performance.

C. Results and Analysis

In this subsection, the proposed algorithm is compared
with existing vehicle re-ID methods including: Vehi-
cleNet [48], FastReID [49], TBE-Net [50], FACT [5],
Mixed Diff+CCL [47], Cycle GAN [30], OIFE+STR [51],
PUL [52], UDAR [16], PROVID [7], VAMI [53], NuFACT [7],
SDC-CNN [54], STP [55], DHMVI [56], VRIC [57], VR-
PROUD [14], FDA-Net [58], View-EALN [32], PAL [18],
Direct Transfer and Baseline System. Specifically, Direct
Transfer denotes the method that adopts directly testing in the
target domain after training in source domains, and Baseline
System denotes the method that merely generates pseudo
labels by clustering after feature extraction to train the re-
ID model. For unsupervised domain adaptive vehicle re-ID,
most algorithms need samples with special annotations during
the training, such as coordinates of special marks in images or
split lines of different targets, etc. Therefore, we only compare
the proposed method with some representative methods.

1) Results on VeRi-776: The test results of all compared
algorithms on the VeRi-776 dataset are listed in Table I.
Note that, VehicleNet, FastReID and TBE-Net are supervised
methods. These methods are expected to perform better since
they are trained with ground truth labels. Our approach
notably excels in mAP, reaching 56.1%, which surpasses all
other unsupervised and domain adaptation methods evaluated.
This superior mAP underscores our method’s effectiveness
in accurately identifying the correct vehicles throughout the
dataset. However, our Rank-1 and Rank-5 accuracies are
modest in comparison to certain methods like PROVID,
SDC-CNN, and VRIC. These methods may benefit from
advanced feature extraction techniques that finely capture
vehicle appearance nuances, essential for achieving high
accuracy in top-ranked identifications. In contrast, our method

Fig. 4. Examples of re-identification ranking results on VeRi-776.

utilizes a streamlined CNN architecture for feature extraction.
Despite the marginally lower Rank-1 and Rank-5 results,
this choice highlights our method’s operational efficiency and
practicality. The robust mAP performance of our framework
attests to its reliability and the balanced precision-recall trade-
off it offers, reinforcing its potential for real-world application
where computational simplicity is as valued as accuracy.

2) Results on VehicleID: The comparative performance of
various algorithms on the VehicleID dataset across different
test sizes is detailed in Table II. Our method demonstrates
superior performance, achieving an mAP of 60.0%, 56.6%,
53.4%, and 50.3%, and Rank-1 accuracies of 53.8%, 50.0%,
45.6%, and 41.4% for test sizes of 800, 1600, 2400, and 3200,
respectively. The PUL approach employs k-means clustering
to assign pseudo-labels to unlabeled samples [52]. However,
this method grapples with the challenge of determining an
optimal cluster count, which can result in misclassifications
or unassigned samples. Our method circumvents this issue
by setting a predetermined cluster number, thereby reducing
the likelihood of such errors and enhancing pseudo-label
accuracy. While the PAL method also leverages a pseudo-
labeling strategy for unsupervised training, it relies solely
on a single backbone network, ResNet-50 [18]. In contrast,
our approach harnesses the collective strength of multiple
heterogeneous networks. By utilizing the mean features from
unlabeled samples extracted through these diverse networks
as pseudo-labels, and by implementing inter-network mutual
supervision, our method significantly refines the accuracy of
pseudo-labels, leading to improved overall performance.

D. Ablation Studies

In order to verify the effectiveness of each module in the
proposed algorithm, we conduct extensive ablation studies
on VeRi-776 and VehicleID. The results are summarized in
Tables III and IV.
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TABLE II
RESULTS ON VEHICLEID

Fig. 5. Examples of re-identification ranking results on VehicleID.

TABLE III
RESULTS OF ABLATION STUDY ON VERI-776

Supervised Method is to perform supervised learning in the
target domain and then test on target samples. Direct Transfer
is to directly utilize the model trained in the source domain
to test on target samples. The above mentioned methods
respectively define the upper performance limit and the lower
performance limit. As we can see from the tables, there is a
large performance gap between the direct transfer model and
supervised models.

We take the proposed model using only voting loss as a
baseline model. Specifically, the initial training of the model
is firstly performed on each edge computing unit. And then
the obtained model parameters and the target predictions are
sent to the central server for dynamic aggregation. After

TABLE IV
RESULTS OF ABLATION STUDY ON VEHICLEID

receiving the integrated parameters from the server, each local
model conducts self-optimization by voting loss. As shown in
Tables III and IV, the baseline model outperforms the direct
transfer model by a large margin. This shows that the decision
loss can effectively utilize the ensemble model to predict more
accurate pseudo-labels and fine-tune each network.

HA represents historical accumulation. MIL and MTL
respectively represent the mutual identity loss and the mutual
triplet loss. WR represents the weight regularization. CL
represents circle loss [59]. In the proposed method, we use
historical accumulated models to produce soft pseudo labels
for supervising other models, so as to avoid the network error
amplification and to preserve the historical knowledge of local
models. In ablation studies, we directly use the current model
to produce predictions as soft pseudo labels. As shown in
Tables III and IV, without using the historical accumulation
strategy, the model has a certain degree of degradation in mAP,
Rank-1 and Rank-5 on both datasets. It can be concluded that
without using the historical accumulated model, the network
tends to degenerate into uniformity, which greatly reduces
the learning ability. Furthermore, we have investigated the
application of circle loss in our experiments, attracted by
its flexible and direct approach to optimizing feature space
distribution. However, our empirical findings indicate that
the loss functions originally designed for our framework
yield a marginally superior performance compared to circle
loss. Additionally, we observed that the convergence rate
when employing circle loss was significantly slower than that
achieved with our original loss functions. This suggests that
while circle loss has its merits, our tailored loss functions
are better suited to our specific federated learning framework
for vehicle re-identification, both in terms of performance and
computational efficiency.

To validate the effectiveness of dynamic aggregation in the
server, we respectively remove the mutual identity loss and
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the mutual triplet loss. The results show that the mAP on
Veri776 dataset drops from 76.0% to 70.2%, and the mAP
on VehicleID dataset drops from 66.1% to 60.4%. A similar
drop can also be observed when studying the mutual triplet
loss. Therefore, we argue that the above two mutual losses
can improve the effectiveness in mutual learning. In addition,
we dismiss the weight regularization strategy and set the
weights of all models to 1 during dynamic aggregation. The
results show that the model performances on VehicleID and
VeRi-776 both drop significantly, which indicates that the
aggregated parameters sent by the central server affect the
identification of features to a certain extent.

V. CONCLUSION

In this paper, we presented an federated unsupervised
domain adaptive vehicle re-ID framework utilizing a three-
stage process: local model processing, dynamic model
aggregation and aggregated model downloading. Through the
innovative use of pseudo labels generated from averaged
features across multiple local models, we effectively utilize
unlabeled target data, a common obstacle in domain adaptation
tasks. The introduction of historical accumulation ensures that
valuable knowledge is not discarded but rather harnessed
to guide the adaptation process. Furthermore, our weight
regularization strategy for model aggregation refines the
discriminative power of the system, leading to a more robust
and accurate vehicle re-ID framework. Our experimental
results affirm the efficacy of our framework in amplifying
the discriminative capacity of vehicle re-ID models. Notably,
given the framework’s generic design, it holds the potential
to be applied to other domains, such as pedestrian [60], [61]
or object re-ID [62], [63], a prospect we find intriguing and
worth exploring in future studies. Building on this foundation,
our future endeavors will focus on exploring more intricate
network architectures and aggregation methods to propel our
framework into practical, real-world applications.
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